Кібернетика та комп'ютерні технології

В роботі встановлені методом ф-перетворення графів структурні властивості 9-ти вершинних графів-обструкцій для поверхні неорієнтованого роду 2.

Ключові слова: граф, поверхня Клейна, структурні властивості графа, графи-обструкції, неорієнтована поверхня, стрічка Мебіуса.

© В.І. Петренюк, Д.А. Петренюк, 2020

УДК 519.85

DOI:10.34229/2707-451X.20.4.5

В.І. ПЕТРЕНЮК, Д.А. ПЕТРЕНЮК

ПРО СТРУКТУРУ 9-ТИ ВЕРШИННИХ ГРАФІВ-ОБСТРУКЦІЙ ДЛЯ ПОВЕРХНІ КЛЕЙНА

Вступ. Розглянемо задачу вивчення методом ф-перетворення графів структурних властивостей 9-ти вершинних графів-обструкцій для неорієнтованої поверхні N_k роду k, k = 2. Основні поняття та позначення взяті із [1-3], всі графи неорієнтовані без кратних ребер та петель. В роботах [4, 5] отримано деякі неізоморфні графи-обструкції для N₂ – поверхні Клейна на не більш ніж 9-ти вершинах, а в [6] наведено діаграми цих графів та 36-ти нових графів-обструкцій на 9-ти вершинах, окрім цього наведено 27 нових графівобструкцій, утворених шляхом розщеплення вершин 8-ми вершинних графів-обструкцій для поверхні N₂. Нехай 2-многовид S без країв неорієнтованого роду γ(S) подано як поверхню S' орієнтованого роду $\gamma(S')$, де $\gamma(S') \ge 0$, $\gamma(S) = 2\gamma(S') + r$, до якої приклеєно *r* стрічок Мебіуса, r > 0; наприклад, поверхня *S* – пляшка Клейна коли $\gamma(S') = 0$ і r = 2, чи поверхня S роду $\bar{\gamma}(S) = 3$ матиме S'-тор із однією приклеєною стрічкою Мебіуса. Для заданого вкладення f, $f: G \rightarrow S$, графа G в S та заданої множини точок X, $X \subset G^0 \cup G^1$, визначимо $t_G(\mathbf{X}, S, f),$ $t = t_G(X, S, f)$, число досяжності множини X відно- $S_G(\mathbf{X}) = \{s_i\}_{i=1}^{t}$ сно S, якщо існує підмножина $S_G(\mathbf{X}) = S \setminus f(G)$, що задовольняє умові:

$$(f(\mathbf{X}) \subseteq \bigcup_{i=1}^{t} \partial s_{i} \cap \mathbf{X}) \wedge (f(\mathbf{X}) \not\subset \bigcup_{i=1, i \neq j}^{t} \partial s_{i} \cap \mathbf{X}),$$

$$j = 1, 2, ..., t.$$

Будемо говорити, що множина X має число досяжності t, $t_G(X,S) = t$, відносно S, якщо серед всіх неізоморфних вкладень f, $f: G \to S$ число $t \in$ найменшим серед чисел $t_G(X,S,f)$. Вважатимемо надалі, що γ позначено γ .

Стаття має вступ та 5 розділів. У чотирьох розділах досліджено структурні властивості 9-ти вершинних графів-обструкцій для неорієнтованої поверхні N_k шляхом подання як φ -образу одного з графів Куратовського та принаймні одного площинного підграфа.

В розділі 5 наведено варіант вивчення властивостей, характерних для вкладень графів до неорієнтованих поверхонь і основний результат.

Визначення 1. Нехай задано вкладення f, $f: G \to S$, графа G в S, яке реалізує $t, t_G(X,S) = t$, де $S_G(X) = S \setminus f(G), S_G(X) = \{s_i\}_1^t$. Будемо говорити, що відносно заданої поверхні S множина X має характеристику $\theta_G(X,S,f), \theta_G(X,S,f) = \theta$, якщо існує θ трійок кліток $\{s_i\}_1^3$ множини $S_G(X)$, на границях яких підмножини $X_i, X_i \subseteq X$, розміщуються довільним чином і задовольняють співвідношенню: $G^0 \cap \partial s_1 \cap \partial s_2 \supseteq \{a_1\} \wedge G^0 \cap \partial s_2 \cap \partial s_3 \supseteq \{a_2\} \wedge G^0 \cap \partial s_1 \cap \partial s_3 \supseteq \supseteq \{a_3\}$, та є найменший по включенню підграф G' графа G, (можливо вироджений в точку), який містить точки $\{a_i\}_1^3$ попарного перетину границь кліток $\{s_i\}_1^3$. Множина X матиме відносно S характеристику $\theta_G(X,S)$, якщо $\theta_G(X,S) = \max \theta_G(X,S,f)$, де максимум береться по всім неізоморфним вкладенням $f, f: G \to S$, що реалізують $t_G(X,S) = t$.

Визначення 2. Нехай задано вкладення $f, f: G \rightarrow S$, графа G в S, яке реалізує $t, t_G(X,S) = t$, де $S_G(X) = \{s_i\}_{i=1}^t, S_G(X) = S \setminus f(G)$, та виконується рівність $\theta_G(X,S) = 0$. Будемо говорити, що відносно S множина X матиме характеристику $\partial \Theta_G(X, f)$, $\partial \Theta = \partial \Theta_G(X, f)$, $\partial \Theta \ge 1$, якщо існує підмножина $\{s_i, s_j, s_k\}$ множини $S_G(X)$, яка задовольняє: $G^1 \cap \partial s_i \cap \partial s_j \supset \{(a_1, b_1)\}$ і $G^1 \cap \partial s_k \cap \partial s_j \supset \{(a_2, b_2)\}$, для всіх $i \neq j \neq k$, i, j, k = 1, 2, 3. На границях $\{\partial s_i, \partial s_j, \partial s_k\}$ множина Х розміщується довільним чином, якщо не містить точок ребер (a_1, b_1) , (a_2, b_2) . На границях $\{\partial s_i, \partial s_i, \partial s_k\}$ множина X розміщується особливим чином (без точок множини X на $\partial s_i \setminus L(a_1, a_2) \cup \{(a_2, a_{20}), (a_1, a_{10})\})$, якщо містить принаймні одну точку цих ребер. Також є клітка s_0 та, можливо, клітка s_{00} . Клітка s_0 , $s_0 \in (S \setminus f(G)) \setminus S_G(X)$, має границю, яка містить: 1) простий ланцюг $L(a_1, a_2)$ ненульової довжини із кінцевими вершинами a_1, a_2 , що також належить ∂s_i ; 2) два простих ланцюги, можливо, вироджених в точку, $L_1(a_1, a_{12})$, $L_1(a_2, a_{22})$, які також належать ∂s_i та ∂s_k , відповідно; 3) ребро (a_{12}, a_{22}) . Клітка $s_{00}, s_{00} \in (S \setminus f(G)) \setminus (S_G(X) \cup \{s_0\})$, має границю, яка містить простий ланцюг $L(a_{10}, a_{20})$ ненульової довжини із кінцевими вершинами a_{10}, a_{20} спільно iз ∂s_i . Множина Х матиме характеристику $\partial \theta_G(X,S)$, якщо $\partial \Theta_G(X,S) = \max \partial \Theta_G(X,S,f)$, де максимум береться по неізоморфним вкладенням, що реалізують $t_G(X,S) = t$ ta $\theta_G(X,S)$.

Визначення 3. Позначимо $krt_G(M)$, $kr = krt_G(M)$, kr -кратність доступу до елементів підмножини M множини точок графа G, як максимальна кількість варіантів вибору різних підмножин $S_G(M, S_{\gamma})$ множини клітин $S_{\gamma} \setminus f(G)$, на границях яких розміщуються всі точки з підмножини M, де максимум узятий по всіх мінімальних вкладеннях f, $f: G \to S_{\gamma}$, графа G в S_{γ} . Іншими словами, це найбільша кількість зірок, які приєднані кінцевими вершинами до кожного елемента підмножини M та вкладені до різних kr 2-кліток із $S_{\gamma} \setminus f(G)$.

Визначення 4. Позначимо $ms_G(M, s, f)$, $k = ms_G(M, s, f)$, k – сторонність доступу із довільної внутрішньої точки замкнутої заданої клітки \bar{s} до кожної точки заданої підмножини M множини точок графа G, де |M| > 2, що полягатиме у наявності такої клітки s, $s \in S_{f(G)}(M, S_{\gamma}, s)$,

де f – задане мінімальне вкладення $f: G \to S_{\gamma}$ графа G в поверхню S_{γ} , яка на своїй границі ∂s містить k копій підмножини M. Найбільшу кількість копій підмножини M на ∂s серед всіх клітин s заданого мінімального вкладення f, $f: G \to S_{\gamma}$, графа G в поверхню S_{γ} позначимо $ms_G(M, f)$. Іншими словами, це найбільша кількість зірок графа G, які приєднані кінцевими вершинами до кожного із принаймні трьох елементів множини M та вкладені до однієї клітки з $S_{\gamma} \setminus f(G)$ заданого мінімального вкладення f, $f: G \to S_{\gamma}$, графа G в S_{γ} .

Визначення 5. Будемо називати $(ms_G(M, f_1), ms_G(M, f_2), ..., ms_G(M, f_N))$ вектором l стороннього доступу до множини M точок графа G із довільної внутрішньої точки замкнутої заданої клітки \bar{s} , $s \in S_{\gamma} \setminus f_k(G)$, l = l(s), до кожної точки заданої підмножини M, де l > 0, |M| > 2, $\{f_k\}_{k=1}^N$ – множина всіх неізоморфних мінімальних вкладень f_k , $f_k : G \to S_{\gamma}$ графа G в S_{γ} . Найбільше l, l = l(s), серед чисел $ms_G(M, f_k)$ узяте по всім s та всім f_k , $s \in S_{\gamma} \setminus f_k(G)$, називатимемо характеристикою l стороннього доступу до множини M точок графа G та позначимо $ms_G(M)$.

Визначення 6. Будемо називати множину підграфів M, $M = \{H_k\}_{k=1}^N$ графа-обструкції H для N_2 , вкладеної до евклідової площини, такою, що мінімально покриває множину ребер графа, якщо матиме місце співвідношення $(H^1 \subseteq \{H_k^1\}_{k=1}^N) \& ((\forall j, j = 1, 2, ...k)(H^1 \not\subset \{H_k^1\}_{k=1}^N \setminus H_j^1))$.

Позначення 1. Будемо називати підграф K графа-обструкції H для N_2 локально проективноплощинним, якщо $f|_K(K) \subset D$, де $f: H \to N_2$ – мінімальне вкладення графа H в N_2 , D – елементарний диск поверхні N_2 . Будемо позначати $St_{n_1,n_2,n_3,..,n_m}(K)$ граф K, із i-тої вершини якого виходять $n_i, n_i \ge 0$, висячих ребер, приєднаних до різних вершин, де i = 1, 2, 3, ...m.

Частина 1

Наведемо ілюстрації до вищенаведених визначень. На рис. 1 в 1-му ряду на перших трьох картах показана циклічна кліткова структура, інші карти ілюструють зіркову структуру на проективній площині та плящці Клейна, на 2-му ряду на перших трьох картах показано ланцюжкову кліткову структуру на проективній площині та плящці Клейна.

РИС. 1. Циклічна, зіркова і ланцюжкова кліткові структури на проективній площині та пляшці Клейна

Твердження 1. Мають місце співвідношення.

1. Граф *G*, *G* = K_6 , має на N_2 число досяжності множини вершин $t_G(K_6^0, N_2) = 2$ і не має вершини з подвійним доступом та при видаленні довільного ребра зменшує на 1 число $t_G(K_6^0, N_2)$.

2. Граф *G*, $G = K_5$, має на N_2 число досяжності множини вершин $t_G(G^0, N_2) = 1$ та дві вершини з двостороннім доступом, а граф *G*, $G = K_5 \setminus e$, має на N_2 три вершини з двостороннім доступом.

3. Граф G, $G = K_7$, має рід $\gamma(G) = 3$.

4. Граф *G*, $G = K_8 \setminus K_{1,2}$, має рід $\gamma(G) = 3$.

5. Граф G, $G = K_6 \setminus 2K_2$, має на N_2 число досяжності множини вершин $t_G(G^0, N_2) = 2$ та має вершину з подвійним доступом, а $G = K_6 \setminus 3K_2$ задовольняє на N_2 рівності $t_G(G^0, N_2) = 2$ та має тільки одну вершину без подвійного доступу.

6. Множина вершин $K_{3,3}^0$ графа $K_{3,3}$ має кратний доступ і є досяжною відносно N_2 .

7. Три графи K_4 , що утворюють дві пари із одним спільним ребром, для кожної своїм, мають три пари ребер, схрещених на площині, вкладаються на дві стрічки Мебіуса.

Доведення цих тверджень показано на рис. 2, де на перших двох картах – вкладення графа K_7 в N_3 , відповідно, побудовані як продовження вкладення f_6 графа K_6 в N_2 та вкладення f_5 графа K_5 в N_2 , причому синім (темним) кольором позначено клітку з множини $N_2 \setminus f_5(K_5)$, на якій маємо подвійний доступ до вершин з під множин {4}, {1}. На четвертій карті показано мінімальне вкладення графа $K_8 \setminus K_{1,2}$ в N_4 . На п'ятій карті – вкладення графа K_6 в N_2 , яке реалізує число $t_G(G^0, N_2) = 2$, та видно зменшення цього числа при видаленні ребра (3, 5).

На рис. 2 на 2-й карті вершини 1, 4 графа K_5 мають на N_2 двосторонній доступ, на 3-й, 5-й, 6й, 8-й, 9-й картах ребра позначені дугами та відрізками товстих ліній. Три підграфи графа G_{33} , що ізоморфні, K_4 утворюють пару із одним спільним ребром (6, 8) та пару із одним спільним ребром (7, 9), вкладаються на N_1 із двома стрічками Мебіуса.

РИС. 2.

ISSN 2707-4501. Кібернетика та комп'ютерні технології. 2020, № 4

Лема I. Нехай граф $G \in \varphi$ -образом графів-обструкцій G_1 та G_2 при φ -перетворенні визначеному наступним чином: $\varphi(G_1 + G_2, \sum_{i=1}^2 (e_1 + e_2)) \rightarrow (G, e)$, де e = (a, b), $e \in G^1$, $e_i = (a_i, b_i)$ є ребром або частиною ребра графа G_i , i = 1, 2. Для орієнтованого роду $\gamma(G)$ мають місце наступні твердження:

1) якщо принаймні одна кінцева вершина кожного з ребер e_i не матиме двостороннього доступу, то маємо рівність $\gamma(G) = \gamma(G_1) + \gamma(G_2)$;

2) якщо кожна кінцева вершина одного з ребер e_i має двосторонній доступ, то матимемо рівність $\gamma(G) = \gamma(G_1) + \gamma(G_2) - 1$.

Доведення леми 1 для довільних графів-обструкцій G_1 та G_2 аналогічне доведенню для двох графів K_5 , показаному на рис. 3 та 4. Виконання тверджень 1 та 2 леми проілюстровано для двох вкладених в тор графів, отриманих з двох пар графів ($K_4, K_{3,3}$), (K_4, K_5), де ребра графа K_4 сині (темні), шляхом φ -перетворень, заданих на парі ребер кожної з цих пар графів. Зазначимо, що наявність двостороннього доступу до ототожнених кінцевих вершин ребра означитиме відсутність додаткової 2-ручки. Також граф $K_7 \setminus e$ подаємо як склейку графа K_5 , вкладеного до N_2 – пляшки Клейна із двостороннім доступом до двох вершин, та двох зірок із суміжними центрами на 5-ти та 6-ти ребрах. Мінімальне вкладення графа $K_7 \setminus e$ до N_2 отримаємо, якщо в кольорову клітку графа K_5 вкладемо (без перетину ребер) дві зірки із суміжними центрами на 5-ти та 6-ти ребрах.

На рис. З до тверджень леми 1 наведено два перші графи (зліва-направо), що отримані з двох графів K_5 двома наступними φ -перетвореннями: 1) по парі ребер; 2) по ребру e = (a,b) та частині ребра u, відповідно, де кольоровою (не білою) ϵ клітка вкладення в тор графа K_5 , до якої вкладено інший граф K_5 та виконано склейку; 3) наведено склейку по ребру e, e = (a,b), графів K_5 , $K_{3,3}$; 4) наведено мінімальне вкладення графа $K_7 \setminus e$ до N_2 – пляшки Клейна.

РИС. 3.

РИС. 4. Наведемо два вкладені в тор графи (зліва-направо), отримані з двох пар графів ($K_4, K_{3,3}$), (K_4, K_5) ϕ -перетвореннями на парах ребер

Лема 2. Нехай граф $G - \varphi$ -образ графів-обструкцій G_1 та G_2 для проективної площини при φ перетворенні визначеному таким чином: $\varphi(G_1 + G_2, \sum_{i=1}^2 (e_1 + e_2)) \rightarrow (G, e)$, де e = (a, b), $e \in G^1$, $e_i = (a_i, b_i)$ – ребро або частина ребра графа G_i , i = 1, 2. Тоді для неорієнтованого роду $\gamma(G)$ не виконуються твердження леми 1.

Доведення. Дійсно, із показаних на рис. 5 вкладень до проективної площини графів K_5 та $K_{3,3}$, видно відсутність двостороннього доступу до довільної підмножини їхніх вершин. Але для $K_5 / (4,7)$ є двосторонній доступ до пари суміжних вершин 3, 4, 7, який не впливає на рід графа A_2 зі списку графів-обструкцій для проективної площини.

РИС. 5. Мінімальні вкладення графів $K_5 / (4,7)$, $A_2 / (1,4)$, K_5 , $K_{3,3}$ до проективної площини

Частина 2

Твердження 2. Мають місце співвідношення.

1. Граф $G_1 - \varphi$ -образ графа K_6 та квазізірки $St_{4,4,4}(\overline{K_3})$ при наступному φ -перетворенні:

 $\phi(K_6 + St_{4,4,4}(\overline{K_3}), \sum_{i=1}^{4} \sum_{j=1}^{4} (a_{ij} + x_{ij})) \rightarrow (G_1, \{\{a_{ij}^*\}_{j=1}^4\}_{i=1}^4),$ де кінцеві вершини x_{ij} квазізірки ототожнюють з вершинами a_{ij} трьох підграфів K_4 графа K_6 , які попарно мають одне спільне ребро, а множина ребер графа G_1 мінімально покрита трьома графами K_4 .

2. Граф $G_2 - \varphi$ -образ графа K_6 та квазізірки $St_{4,4,4}(\overline{K_3 \setminus K_2})$ при φ -перетворенні: $\varphi(K_6 + St_{4,4,4}(\overline{K_3 \setminus K_2}), \sum_{i=1}^4 \sum_{j=1}^4 (a_{ij} + x_{ij})) \rightarrow (G_1, \{\{a_{ij}^*\}_{j=1}^4\}_{i=1}^4)$, де кінцеві вершини x_{ij} квазізірки ото-

тожнюються з вершинами a_{ij} трьох підграфів K_4 графа K_6 , три з яких утворюють послідовність, бо мають по одному спільному ребру, причому множина ребер графа G_2 мінімально покрита трьома графами K_5 і одним K_6 . Доведення цих тверджень показано на рис. 6.

РИС. 6. Граф G_1 вкладений до проективної площини N_1 із двома стрічками Мебіуса, граф G_2 вкладено на N_3 , утвореної з пляшки Клейна та стрічки Мебіуса

Твердження 3. Мають місце співвідношення.

1. Граф $G_3 - \varphi$ -образ графа K_5 та квазізірки $St_{4,6,6,6}(K_4)$ при φ -перетворенні: $\varphi(K_5 + St_{4,6,6,6}(K_4), \sum_{i=1}^4 (a_i + x_i)) \rightarrow (G_3, \{a_i^*\}_{i=1}^4)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , де $\deg_{St_{4,6,6,6}(K_4)}(x_4) = 4$, $\deg_{St_{4,6,6,6}(K_4)}(x_i) = 2$, i = 1, 2, 3, причому множина ребер графа G_3 мінімально покрита двома графами K_5 із спільною вершиною та трьома графами K_4 (один з яких містить K_3 , який унеможливлює двосторонній доступ до точок з $\{a_i\}_{i=1}^4$ множини приєднання).

2. Граф $G_4 - \varphi$ -образ графа K_5 та квазізірки $St_{5,5,5,5}(K_4 \setminus 2K_2)$ при φ -перетворенні: $\varphi(K_5 + St_{5,5,5,5}(K_4 \setminus 2K_2), \sum_{i=1}^4 (a_i + x_i)) \rightarrow (G_4, \{a_i^*\}_{i=1}^4)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , де $\deg_{St_{5,5,5,5}(K_4 \setminus 2K_2)}(x_i) = 2$, i = 1, 2, 3, 4, причому множина ребер графа G_4 мінімально покрита одним графом K_5 та чотирма графами K_4 .

3. Граф $G_5 - \varphi$ -образ графа $K_5 \setminus e$ та квазізірки $St_{5,5,5,5}(K_4 \setminus K_2)$ при φ -перетворенні: $\varphi(K_5 \setminus e + St_{5,5,5,5}(K_4 \setminus K_2), \sum_{i=1}^4 (a_i + x_i)) \rightarrow (G_5, \{a_i^*\}_{i=1}^4)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа $K_5 \setminus e$, де $\deg_{St_{5,5,5,5}(K_4 \setminus K_2)}(x_i) = 3$, i = 1, 2, 3, 4, причому множина ребер графа G_5 мінімально покрита одним графом $K_5 \setminus (4, 5)$, одним колесом W_4 з чотирма спицями (частинним $K_{2,3}$ на вершинах 4, 5, 6, 7, 8, 9 із ребрами (6, 7), (6, 9)) та двома K_4 .

4. Граф $G_6 - \varphi$ -образ графа K_5 та квазізірки $St_{2,2,3,4}(K_4 \setminus K_2)$ при наступному φ -перетворенні:

 $\phi(K_5 + St_{2,2,3,4}(K_4 \setminus K_2), \sum_{i=1}^4 (a_i + x_i)) \to (G_6, \{a_i^*\}_{i=1}^4),$ де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , де $\deg_{St_{2,2,3,4}(K_4 \setminus K_2)}(x_i) = 3$, i = 1, 2, 3, 4, причому множина ребер графа

 G_6 мінімально покрита одним графом K_5 , одним $K_5 \setminus (7,5)$ і трьома графами K_4 . Доведення цих тверджень показано на рис. 7.

ISSN 2707-4501. Cybernetics and Computer Technologies. 2020, No.4

РИС. 7. Графи G_3 , G_4 , G_5 , G_6 вкладені мінімально на N_2 з приклеєною стрічкою Мебіуса

Твердження 4. Мають місце співвідношення.

1. Граф $G_7 - \varphi$ -образ графа K_5 та квазізірки $St_{2,2,3,3,4}(K_4 \setminus K_3^1)$ при φ -перетворенні: $\varphi(K_5 + St_{2,2,3,3,4}(K_4 \setminus K_3^1), \sum_{i=1}^5 (a_i + x_i)) \rightarrow (G_7, \{a_i^*\}_{i=1}^5)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , x_1 , x_2 мають степінь 2, x_3 , x_4 мають степінь 3, deg $_{St_{2,2,3,4}(K_4 \setminus K_3^1)}(x_4) = 4$, причому множина ребер графа G_7 мінімально покрита одним графом K_5 , одним K_2 , одним $K_5 \setminus (4,5)$ і двома графами K_4 .

2. Граф $G_8 - \varphi$ -образ графа $K_5 \setminus e$, де $e = (a_3, a_4)$, та квазізірки $St_{3,3,4,4}(C_4 \setminus e)$ при φ -перетворенні: $\varphi(K_5 \setminus e + St_{3,3,4,4}(C_4 \setminus e), \sum_{i=1}^4 (a_i + x_i)) \rightarrow (G_8, \{a_i^*\}_{i=1}^4)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа $K_5 \setminus e$, x_1 , x_2 мають степінь 3, x_3 , x_4 мають степінь 4, де $C_4 \setminus e$ – простий ланцюг довжини 3, причому множина ребер графа G_8 мінімально покрита одним графом $K_5 \setminus e$ і п'ятьма графами K_4 . Доведення тверджень показано на рис. 8.

РИС. 8. Графи G_7 , G_8 вкладено до проективної площини N_1 із двома стрічками Мебіуса

Твердження 5. Мають місце співвідношення.

1. Граф $G_9 - \varphi$ -образ графа K_5 та квазізірки $St_{2,2,2,2,2}(K_4)$ при φ -перетворенні: $\varphi(K_5 + St_{2,2,2,2,2}(K_4), \sum_{i=1}^5 (a_i + x_i)) \rightarrow (G_9, \{a_i^*\}_{i=1}^5)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , x_i мають степінь 2, i = 1, 2, 3, 4, 5, причому множина ребер графа G_9

мінімально покрита одним K_5 і чотирма K_4 .

2. Граф $G_{10} - \varphi$ -образ графа K_5 та квазізірки $St_{1,1,2,4,4}(K_4 \setminus K_2^1)$ при φ -перетворенні: $\varphi(K_5 + St_{1,1,2,4,4}(K_4 \setminus K_2^1), \sum_{i=1}^5 (a_i + x_i)) \rightarrow (G_9, \{a_i^*\}_{i=1}^5)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , x_1 , x_2 мають степінь 1, x_3 , x_4 мають степінь 4, $\deg_{St_{1,1,2,4,4}(K_4 \setminus K_2^1)}(x_5) = 2$, причому множина ребер графа G_{10} мінімально покрита множинами ребер графів K_5 і трьох графів K_4 (рис. 9).

РИС. 9. Графи G_9 , G_{10} вкладені в проективну площину N_1 із двома стрічками Мебіуса

Твердження 6. Мають місце співвідношення.

1. Граф $G_{11} - \varphi$ -образом графа K_5 та квазізірки $St_{5,5,5,5}(K_4 \setminus 2K_2^1)$ при φ -перетворенні: $\varphi(K_5 + St_{5,5,5,5}(K_4 \setminus 2K_2^1), \sum_{i=1}^4 (a_i + x_i)) \rightarrow (G_{11}, \{a_i^*\}_{i=1}^4)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , x_1 , x_2 мають степінь 2, x_3 , x_4 мають степінь 4, причому множина ребер графа G_{11} мінімально покрита множинами ребер графів K_5 , двох K_4 та одного $K_6 \setminus 2K_2$.

2. Граф G_{12} – φ -образ графа K_5 та квазізірки $St_{3,4,4,5}(K_4 \setminus K_2^1)$ при наступному φ -перетворенні:

 $\varphi(K_5 + St_{3,4,4,5}(K_4 \setminus K_2^1), \sum_{i=1}^5 (a_i + x_i)) \to (G_{12}, \{a_i^*\}_{i=1}^5)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , x_1 , x_2 мають степінь 2, x_3 , x_4 мають степінь 1, $\deg_{St_{3,4,4,5}(K_4 \setminus K_2^1)} x_5 = 3$, причому множина ребер графа G_{12} мінімально покрита множинами ребер графів K_5 та чотирьох графів K_4 .

РИС. 10. Графи G_{11} , G_{12} вкладені в проективну площину N_1 із двома стрічками Мебіуса

Твердження 7. Мають місце співвідношення.

1. Граф $G_{13} - \varphi$ -образ графа K_5 та квазізірки $St_{4,5,5,6}(K_4 \setminus K_2^1)$ при такому φ -перетворенні: $\varphi(K_5 + St_{4,5,5,6}(K_4 \setminus K_2^1), \sum_{i=1}^5 (a_i + x_i)) \rightarrow (G_{13}, \{a_i^*\}_{i=1}^5)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , x_1 , x_2 мають степінь 2, x_3 , x_4 мають степінь 3, $\deg_{St_{4,5,5,6}(K_4 \setminus K_2^1)} x_5 = 3$, причому множина ребер графа G_{13} мінімально покрита множинами ребер графів K_5 та п'ятьох графів K_4 .

2. Граф $G_{14} - \varphi$ -образ графа K_5 та квазізірки $St_{4,5,5,6}(K_4 \setminus K_2^1)$ при наступному φ -перетворенні: $\varphi(K_5 + St_{4,5,5,6}(K_4 \setminus K_2^1), \sum_{i=1}^4 (a_i + x_i)) \rightarrow (G_{14}, \{a_i^*\}_{i=1}^4)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , x_1 , x_3 , x_2 мають степінь 2, x_4 має степінь 4, причому множина

ребер графа G_{14} мінімально покрита множинами ребер графів K_5 , одного графа $K_5 \setminus (7, 8)$ та двох графів K_4 (рис. 11).

РИС. 11. Графи G₁₃, G₁₄ вкладені мінімально в проективну площину N₁ із двома приклеєними стрічками Мебіуса

Твердження 8. Мають місце співвідношення.

1. Граф $G_{15} - \varphi$ -образ графа $K_5 \setminus e$ та квазізірки $St_{5,5,5,6}(K_4 \setminus K_2^1)$ при φ -перетворенні: $\varphi(K_5 \setminus e + St_{5,5,5,7}(K_4 \setminus K_2^1), \sum_{i=1}^4 (a_i + x_i)) \rightarrow (G_{15}, \{a_i^*\}_{i=1}^4)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , x_1 , x_2 мають степінь 2, x_3 , x_4 мають степінь 4, причому множина ребер графа G_{15} мінімально покрита множинами ребер трьох графів $K_5 \setminus e$ та двох графів K_4 .

2. Граф G_{16} – φ -образ графа K_5 та квазізірки $St_{4,5,6,6}(K_4 \setminus K_2^1)$ при φ -перетворенні:

$$\varphi(K_5 + St_{4,5,6,6}(K_4 \setminus K_2^1), \sum_{i=1}^3 (a_i + x_i)) \to (G_{16}, \{a_i^*\}_{i=1}^3)$$
, де кінцеві вершини x_i квазізірки ототожню-

ються із вершинами a_i графа K_5 , x_1 , x_2 мають степінь 4, x_3 мають степінь 3, причому множина ребер графа G_{16} мінімально покрита множинами ребер графів K_5 , двох графів $K_5 \setminus (9, 8)$ та графа K_4 (рис. 12).

РИС. 12. Графи G₁₅, G₁₆ вкладені в евклідову площину із трьома приклеєними стрічками Мебіуса та в проективну площину N₁ із двома приклеєними стрічками Мебіуса, відповідно

Частина 3

Твердження 9. Мають місце співвідношення.

1. Граф $G_{17} - \varphi$ -образ графа $K_5 \setminus e$ та квазізірки $St_{4,5,6,6}(K_4 \setminus K_{1,2}^1)$ при φ -перетворенні: $\varphi(K_5 \setminus e + St_{4,5,6,6}(K_4 \setminus K_{1,2}^1), \sum_{i=1}^5 (a_i + x_i)) \rightarrow (G_{17}, \{a_i^*\}_{i=1}^5)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , x_1 , x_2 мають степінь 3, x_3 має степінь 6, x_4 має степінь 1, x_5 має степінь 2, причому множина ребер графа G_{17} мінімально покрита множинами ребер двох

має степінь 2, причому множина ребер графа G_{17} мінімально покрита множинами ребер двох графів $K_5 \setminus (1, 2)$ та п'ятьох графів K_4 .

2. Граф $G_{18} - \varphi$ -образ графа K_5 та квазізірки $St_{4,4,4,5}(K_2 + \overline{K_2})$ при φ -перетворенні: $\varphi(K_5 + St_{4,4,4,5}(K_2 + \overline{K_2}), \sum_{i=1}^5 (a_i + x_i)) \rightarrow (G_{18}, \{a_i^*\}_{i=1}^5)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , x_1 , x_2 , x_3 мають степінь 4, x_4 має степінь 2, x_5 має степінь 1, причому множина ребер графа G_{18} мінімально покрита множинами ребер графів $K_7 \setminus K_2^1$ та двох графів K_4 (рис. 13).

РИС. 13. Графи G_{17} , G_{18} вкладені мінімально в N_1 із двома приклеєними стрічками Мебіуса

Твердження 10. Мають місце співвідношення.

1. Граф $G_{19} - \varphi$ -образ графа K_5 та квазізірки $St_{5,5,5,5}(K_4 \setminus 2K_2^1)$ при φ -перетворенні: $\varphi(K_5 + St_{5,5,5,5}(K_4 \setminus 2K_2^1), \sum_{i=1}^3 (a_i + x_i)) \rightarrow (G_{19}, \{a_i^*\}_{i=1}^3)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , x_1 , x_2 , x_3 , x_4 мають степінь 4, причому множина ребер графа G_{19} мінімально покрита множинами ребер одного графа K_4 та 2-х графів $K_5 \setminus K_2^1$.

2. Граф G_{20} – φ -образ графа K_5 та квазізірки $St_{4,5,5,5}(z_4 \setminus K_2^1)$ при φ -перетворенні: $\varphi(K_5 + St_{4,5,5,5}(z_4 \setminus K_2^1), \sum_{i=1}^5 (a_i + x_i)) \rightarrow (G_{20}, \{a_i^*\}_{i=1}^5)$, де z_4 – простий цикл довжини 4, x_i – кінцеві

вершини квазізірки, які ототожнюються із вершинами a_i графа K_5 , x_1 , x_2 мають степінь 1, x_3 , x_4 , x_5 мають степінь 4, причому множина ребер графа G_{20} мінімально покрита множинами ребер графів K_5 та шістьма графами K_4 (рис. 14).

РИС. 14. Графи G₁₉, G₂₀ вкладені мінімально в N₁ із двома приклеєними стрічками Мебіуса та в евклідову площину із трьома приклеєними стрічками Мебіуса, відповідно

Твердження 11. Мають місце співвідношення.

1. Граф $G_{21} - \varphi$ -образ графа $K_5 \setminus e$ та квазізірки $St_{5,5,6,7}(K_4)$ при φ -перетворенні: $\varphi(K_5 \setminus e + St_{5,5,6,7}(K_4), \sum_{i=1}^5 (a_i + x_i)) \rightarrow (G_{21}, \{a_i^*\}_{i=1}^5)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа $K_5 \setminus e$, x_1 має степінь 1, x_2 , x_3 мають степінь 2, x_4 , x_5 мають степінь 3, причому множина ребер графа G_{21} мінімально покрита ребрами графа $K_5 \setminus e$ і чотирьох графів K_4 .

2. Граф $G_{22} - \varphi$ -образ графа K_5 та квазізірки $St_{5,5,5,5}(K_4 \setminus 2K_2^1) \varphi$ -перетворенні: $\varphi(K_5 + St_{5,5,5,5}(K_4 \setminus 2K_2^1), \sum_{i=1}^5 (a_i + x_i)) \rightarrow (G_{22}, \{a_i^*\}_{i=1}^5)$, де кінцеві вершини x_i квазізірки ототожню-

ються із вершинами a_i графа K_5 , x_1 , x_2 мають степінь 1, x_3 має степінь 2, x_4 , x_5 мають степінь 4, причому множина ребер графа G_{22} мінімально покрита множинами ребер графа K_5 та чотирьох графів K_4 (рис. 15).

РИС. 15. Графи G₂₁, G₂₂ вкладені в евклідову площину із трьома приклеєними стрічками Мебіуса та в N₁ із двома стрічками Мебіуса, відповідно

Твердження 12. Мають місце співвідношення.

1. Граф $G_{23} - \varphi$ -образ графа K_5 та квазізірки $St_{4,5,5,6}(K_4)$ при φ -перетворенні: $\varphi(K_5 + St_{4,5,5,6}(K_4), \sum_{i=1}^4 (a_i + x_i)) \rightarrow (G_{23}, \{a_i^*\}_{i=1}^4)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , x_1 , x_2 , x_3 мають степінь 2, x_4 має степінь 3, причому множина ребер графа G_{23} мінімально покрита множинами ребер графа K_5 та чотирьох графів K_4 .

2. Граф $G_{24} - \varphi$ -образ графа K_5 та квазізірки $St_{4,5,6,6}(K_4)$ при φ -перетворенні: $\varphi(K_5 + St_{4,5,6,6}(K_4), \sum_{i=1}^4 (a_i + x_i)) \rightarrow (G_{24}, \{a_i^*\}_{i=1}^4)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 - x_i має стецінь 1 - x_5 має стецінь 2 - x_i - x_5 мають стецінь 3 причому множи-

вершинами a_i графа K_5 , x_1 має степінь 1, x_2 має степінь 2, x_4 , x_3 мають степінь 3, причому множина ребер графа G_{24} мінімально покрита множинами ребер графа K_5 та чотирьох графів K_4 (рис. 16).

РИС. 16. Графи G_{23} , G_{24} вкладені мінімально в N_1 із двома приклеєними стрічками Мебіуса

Твердження 13. Мають місце співвідношення.

1. Граф $G_{25} - \varphi$ -образ графа $K_5 \setminus e$ та квазізірки $St_{5,5,5,6}(K_4 \setminus e)$ при φ -перетворенні: $\varphi(K_5 \setminus e + St_{5,5,5,6}, (K_4 \setminus e), \sum_{i=1}^{5} (a_i + x_i)) \rightarrow (G_{25}, \{a_i^*\}_{i=1}^5)$, де кінцеві вершини x_i квазізірки ототожню-

ються із вершинами a_i графа $K_5 \setminus e$, x_1 , x_2 , x_3 мають степінь 2, x_4 має степінь 4, x_5 має степінь 1, причому множина ребер графа G_{25} мінімально покрита множинами ребер двох $K_5 \setminus e$ та чотирьох K_4 .

2. Граф $G_{26} - \varphi$ -образ графа $K_5 \setminus e$ та квазізірки $St_{5,5,6,6}(K_4 \setminus e)$ при φ -перетворенні: $\varphi(K_5 \setminus e + St_{5,5,5,6}, (K_4 \setminus e), \sum_{i=1}^5 (a_i + x_i)) \rightarrow (G_{26}, \{a_i^*\}_{i=1}^5)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа $K_5 \setminus e$, x_1 , x_2 мають степінь 1, x_4 має степінь 2, x_3 , x_5 мають степінь 4, причому множина ребер графа G_{26} мінімально покрита множинами ребер трьох $K_5 \setminus e$ та двох K_4 (рис. 17).

РИС. 17. Графи G_{25} , G_{26} вкладені в евклідову площину із трьома стрічками Мебіуса

Твердження 14. Мають місце співвідношення.

1. Граф $G_{27} - \varphi$ -образ графа K_5 та квазізірки $St_{5,5,5,6}(K_4)$ при φ -перетворенні: $\varphi(K_5 + St_{5,5,5,6}(K_4), \sum_{i=1}^3 (a_i + x_i)) \rightarrow (G_{27}, \{a_i^*\}_{i=1}^3)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , x_1 , x_2 , x_3 мають степінь 3, причому множина ребер G_{27} мінімально покрита множинами ребер K_5 та трьох K_4 .

2. Граф G_{28} – φ -образ графа $K_5 \setminus e$ та квазізірки $St_{4,4,5,7}(K_4 \setminus K_{1,2}^1)$ при φ -перетворенні: $\varphi(K_5 \setminus e + St_{4,4,5,7}(K_4 \setminus K_{1,2}^1), \sum_{i=1}^{5} (a_i + x_i)) \rightarrow (G_{28}, \{a_i^*\}_{i=1}^5)$, де кінцеві вершини x_i квазізірки ототож-

нюються із вершинами a_i графа $K_5 \setminus e$, x_1 , x_2 , x_3 мають степінь 2, x_4 , x_5 мають степінь 2, причому множина ребер графа G_{28} мінімально покрита множинами ребер графа $K_5 \setminus e$ та чотирьох графів K_4 (рис. 18).

РИС. 18. Графи G₂₇ вкладено в N₁ із двома приклеєними стрічками Мебіуса, G₂₈ вкладено в евклідову площину із трьома приклеєними стрічками Мебіуса

Частина 4

Твердження 15. Мають місце співвідношення.

1. Граф $G_{29} - \varphi$ -образ графа $K_5 \setminus e$ та квазізірки $St_{5,5,5,5}(K_4)$ при φ -перетворенні: $\varphi(K_5 \setminus e + St_{5,5,5,5}(K_4)), \sum_{i=1}^4 (a_i + x_i)) \rightarrow (G_{29}, \{a_i^*\}_{i=1}^4)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа $K_5 \setminus e$, x_1 , x_2 , x_3 мають степінь 2, x_4 має степінь 3, причому множина ребер графа G_{29} мінімально покрита множинами ребер двох графів $K_5 \setminus e$ та трьох графів K_4 .

2. Граф G_{30} – φ -образ графа K_5 та квазізірки $St_{4,4,6,6}(K_4 \setminus K_2^1)$ при φ -перетворенні:

 $\varphi(K_5 + St_{4,4,6,6}(K_4 \setminus K_2^1), \sum_{i=1}^4 (a_i + x_i)) \to (G_{30}, \{a_i^*\}_{i=1}^4)$, де кінцеві вершини x_i квазізірки ототожню-

ються із вершинами a_i графа K_5 , x_1 , x_2 мають степінь 1, x_3 має степінь 2, x_4 , x_5 мають степінь 3, причому множина ребер графа G_{30} мінімально покрита множинами ребер графа K_5 та трьох графів K_4 (рис. 19).

РИС. 19. Графи G_{29} , G_{30} вкладені в N_1 із двома приклеєними стрічками Мебіуса

Твердження 16. Мають місце співвідношення.

1. Граф $G_{31} - \varphi$ -образ графа K_5 та квазізірки $St_{4,4,6,6}(K_4)$ при φ -перетворенні: $\varphi(K_5 + St_{4,4,6,6}(K_4), \sum_{i=1}^4 (a_i + x_i)) \rightarrow (G_{31}, \{a_i^*\}_{i=1}^4)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , x_1 , x_2 , x_3 , x_4 мають степінь 2, причому множина ребер графа G_{31}

вершинами a_i графа K_5 , x_1 , x_2 , x_3 , x_4 мають степинь 2, причому множина ребер графа G_{31} мінімально покрита множинами ребер графа K_5 та чотирьох графів K_4 .

2. Граф G_{32} — ϕ -образ графа $K_5 \setminus e$ та квазізірки $St_{3,5,5,6}(z_4 \setminus e)$ при ϕ -перетворенні:

 $\varphi(K_5 \setminus e + St_{3,5,5,6}(z_4 \setminus e)), \sum_{i=1}^5 (a_i + x_i)) \to (G_{32}, \{a_i^*\}_{i=1}^5)$, де $z_4 \setminus e$ – простий ланцюг довжини 3, x_i –

кінцеві вершини квазізірки, які ототожнюються із вершинами a_i графа $K_5 \setminus e$, x_1 має степінь 1, x_3 , x_2 , x_4 мають степінь 3, x_5 має степінь 2, причому множина ребер графа G_{32} мінімально покрита множинами ребер графа $K_5 \setminus e$ та чотирьох графів K_4 (рис. 20).

РИС. 20. Графи G_{31} , G_{32} вкладені мінімально в N_1 із двома стрічками Мебіуса

Твердження 17. Мають місце співвідношення.

1. Граф $G_{33} - \varphi$ -образ графа K_5 та квазізірки $St_{5,5,5,5}(K_4)$ при φ -перетворенні: $\varphi(K_5 + St_{5,5,5,5}(K_4), \sum_{i=1}^4 (a_i + x_i)) \rightarrow (G_{33}, \{a_i^*\}_{i=1}^4)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , x_1 , x_2 , x_3 , x_4 мають степінь 2, причому множина ребер графа G_{33} мінімально покрита множинами ребер графа K_5 та трьох графів K_4 .

2. Граф $G_{34} - \varphi$ -образ графа K_5 та квазізірки $St_{3,3,5,6}(K_4)$ при φ -перетворенні: $\varphi(K_5 + St_{3,3,5,6}(K_4), \sum_{i=1}^5 (a_i + x_i)) \rightarrow (G_{34}, \{a_i^*\}_{i=1}^5)$, де кінцеві вершини x_i квазізірки ототожнюються із

вершинами a_i графа K_5 , x_1 , x_2 , x_3 , x_4 мають степінь 2, x_5 має степінь 1, причому множина ребер графа G_{34} мінімально покрита множинами ребер графа K_5 та трьох графів K_4 (рис. 21).

РИС. 21. Графи $G_{33}\,,\,G_{34}\,$ вкладені мінімально в $\,N_1\,$ із двома стрічками Мебіуса

Твердження 18. Мають місце співвідношення.

1. Граф $G_{35} - \varphi$ -образ графа K_5 та квазізірки $St_{4,4,6,6}(K_4)$ при φ -перетворенні: $\varphi(K_5 + St_{4,4,6,6}(K_4), \sum_{i=1}^3 (a_i + x_i)) \rightarrow (G_{35}, \{a_i^*\}_{i=1}^3)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , x_1 , x_2 мають степінь 2, x_3 має степінь 4, причому множина ребер графа G_{35} мінімально покрита множинами ребер двох графів K_5 та графа K_4 . 2. Граф $G_{36} - \varphi$ -образ графа K_5 та квазізірки $St_{5,5,5,6}(K_4)$ при φ -перетворенні: $\varphi(K_5 + St_{5,5,5,6}(K_4), \sum_{i=1}^4 (a_i + x_i)) \rightarrow (G_{36}, \{a_i^*\}_{i=1}^4)$, де кінцеві вершини x_i квазізірки ототожнюються із вершинами a_i графа K_5 , x_1 , x_2 , x_3 мають степінь 2, x_4 має степінь 3, причому множина ребер графа G_{36} мінімально покрита множинами ребер графів K_5 , $K_5 \setminus (8,5)$ та графа K_4 (рис. 22).

РИС. 22. Графи G₃₅, G₃₆ вкладено в N₁ із двома приклеєними стрічками Мебіуса

Частина 5

Твердження 19. Для довільного мінімального вкладення *f* простого графа *G* до неорієнтованої поверхні *N* мають місце співвідношення.

1. Немає ребер e, e', e = (a,b), e' = (b,a) на границі довільної клітки $s, s \in S_G(N, f)$, але можуть мати місце повторення деяких вершин.

2. Немає повторення двох пар вершин чи двох пар частин ребер e, e = (a, b), e', e' = (c, d), які попарно розділяють одна одну та лежать на границі довільної клітки $s, s \in S_G(N, f)$.

3. Немає двох 2-кліток s_1, s_2 , де $s_1, s_2 \in S_G(N, f)$, на границях яких розташовані повторення трьох виділених ребра із різним порядком слідування.

Доведення. Співвідношення 1. Припустимо, методом від протилежного, що для деякого мінімального вкладення f графа G до неорієнтованої поверхні N границі клітки s, $s \in S_G(N, f)$, є два ребра e = (a,b), e' = (b,a), які є протилежно направленими копіями ребра $\phi(e) = (\phi(a), \phi(b))$, що розташовані на границі ∂s , тобто на поверхні N є одна стрічка Мебіуса, яка містить одне ребро $\phi(e)$, де операція ϕ – ототожнення точок на границях кліток є оберненою до операції розбиття на клітки поверхні N. Оскільки кожне з цих ребер належить перетину однієї з двох пар кліток (s,s_1) , (s,s_2) , то видаливши ребро e, ми, тим самим, видаляємо й ребро e', утворюючи простий цикл Z, який містить всі ті ребра простого графа $G \setminus e$, що належали границям кліток s, s_1 , s_2 , та стане границею нової клітки s_0 , $s_0 \in S_{G\setminus e}(N, f)$. Побудуємо вкладення f', $f': G \rightarrow N$, де $f'|_{G\setminus e} = f|_{G\setminus e}$, $f'(e) \subset \overline{s_0}$, причому вершинами нового ребра стане кінцева вершина ребра (a,b) та початкова вершина ребра (b,a). Отримаємо розбиття клітки s_0 на дві клітки, причому одна з них буде утворена шляхом ототожнення двох пар діаметрально протилежних вершин, тобто стрічкою Мебіуса без ребра, яку замінимо 2-кліткою зменшивши рід $\gamma(N)$, як показано на рис. 23. Тим самим маємо суперечність умові про рід графа G. Отже припущення неправильне. Доведення співвідношення 1 закінчено.

РИС. 23. Ряд з трьох карт ілюструє співвідношення 1 твердження 19

Доведення. Співвідношення 2. Припустимо, методом від протилежного, що деяким мінімальним вкладенням f графа G до неорієнтованої поверхні N із, принаймні, двома 2-ручками та однією стрічкою Мебіуса, які розташовані на границі деякої клітки s, $s \in S_G(N, f)$, є повторення або двох пар вершин, або двох пар частин ребер e,e', де e = (a,b), e' = (c,d), які розміщені на границі ∂s як копії ребер $\phi(e)$, $\phi(e')$, де $\phi(e) = (\phi(a), \phi(b)), \phi(e') = (\phi(c), \phi(d))$. Тобто, на поверхні N дві ручки містять по одному ребру $\phi(e)$ чи $\phi(e')$, де операція ϕ – ототожнення вершин та ребер на границях кліток є оберненою до операції розбиття на клітки поверхні N мінімальним вкладенням f графа G. Розглянемо простий шлях L, що лежить в середині клітки s і з'єднує середні точки копій ребра e чи його частини та який стане негомотопним нулю простим циклом $\phi(L)$ на поверхні N після операції ϕ – ототожнення копій ребер (частин) та вершин графа G. Видалимо цикл $\phi(L)$ і ребро $\phi(e)$ тим самим відріжемо звільнену ручку поверхні та розглянемо вкладення f', $f' = f|_{G \setminus e}$, як звуження вкладення f на підграф $G \setminus e$ до неорієнтованої поверхні N' роду $\gamma(N')$, $\gamma(N') = \gamma(N) - 2$, причому ребро $\phi(e') = (\phi(c), \phi(d))$ буде вкладене на ручці h', так, що з одного боку якого розташовано клітку s' з вершиною $\phi(a)$ на границі $\partial s'$, а з другого боку розташовано клітку s" з вершиною $\phi(b)$ на ∂s ", де $\phi(e') \subset \partial s' \cap \partial s$ ". Приклеїмо до цих кліток $\overline{s'} \cup \overline{s"}$ стрічку Мебіуса та вкладемо ребро $f'(\phi(a), \phi(b))$ до $\overline{s' \cup s''}$ не перетинаючи $f'(\phi(e'))$. Тим самим отримаємо вкладення графа G до поверхні N" роду $\gamma(N")$, $\gamma(N") = (\gamma(N) - 2) + 1$, яке суперечить співвідношенню 2. Отже припущення неправильне. Доведення співвідношення 2 закінчено (рис. 24).

РИС. 24. Ряд з чотирьох карт ілюструє співвідношення 2 твердження 19

Доведення. Співвідношення 3. Припустимо, методом від протилежного, що деяким мінімальним вкладенням f графа G до неорієнтованої поверхні N із, принаймні, 2-ручкою R та стрічкою Мебіуса M, три ребра e, e', e'' розташовані на границях деяких 2-кліток s_1, s_2 , де $s_1, s_2 \in S_G(N, f)$. Нехай e = (a,b), e' = (c,d), e'' = (g,h) розміщені на границі ∂s_1 в порядку $\phi(e), \phi(e'), \phi(e''), a$ на границі ∂s_2 в порядку $\phi(e), \phi(e''), \phi(e'), de \phi(e) = (\phi(a), \phi(b)), \phi(e') = (\phi(c), \phi(d)),$ $<math>\phi(e'') = (\phi(g), \phi(h)), де \phi$ – операція ототожнення вершин та ребер на границях кліток, яка є оберненою до операції розбиття на клітки поверхні N мінімальним вкладенням f графа G. Тоді ребра $\phi(e), \phi(e')$ з $G^1 \cap (\partial s_1 \cup \partial s_2)$ мають розміщуватися на 2-ручкі R та на M стрічці Мебіуса, на якій переставимо місцями кінцеві вершини (перевернемо ребро) $\phi(e)$. Розглянемо прості ланцюги L_1, L_2 , які з'єднують середини ребер e, e' на клітках s_1, s_2 , відповідно, та утворюють простий цикл Z в результаті операції ототожнення вершин та ребер на границях кліток s_1, s_2 . Видалимо ребра $\phi(e)$ і $\phi(e')$ та отримаємо вільну від ребер 2-ручку R. Видалимо простий цикл Z, тобто розріжемо 2-ручку R, причому не розділяємо поверхню N на дві частини. Отримаємо вкладення f', $f'=f|_{G\setminus\{e,e'\}}$, графа $G\setminus\{e,e'\}$ до неорієнтованої поверхні N', утвореної з N шляхом видалення ручки R, де $\gamma(N') \leq \gamma(N) - 2$. Оскільки таке вкладення є 2-клітковим, то розмістимо на стрічці M ребро f'(e''), яке разом з вершинами видаленого ребра e' належатиме двом псевдокліткам, на границях яких розділятимуть одна одну пари кінцевих вершин ребер e, e'. Продовжимо вкладення f'на ребра e, e', які перехрещені на площинному диску, уникаючи перетину шляхом розташування їх на стрічці M, де вже вкладено вершини ребра e''. Тим самим отримаємо суперечність умові про мінімальність вкладення f графа G до неорієнтованої поверхні N, тобто прилущення неправильне. Доведення співвідношення 3 закінчено (рис. 25). Доведення твердження 19 закінчено.

РИС. 25. Ілюструє співвідношення 3 твердження 19

Твердження 20. Для довільного мінімального вкладення f простого графа G до орієнтованої поверхні N не мають місця співвідношення твердження 19.

Доведення. В кожному із співвідношень твердження 19 є стрічка Мебіуса, тому для орієнтованої поверхні N кожне з цих співвідношень не матиме місця.

Теорема 1. Кожен граф-обструкція *H* для *N*₂ – неорієнтованої поверхні рода 2 задовольняє співвідношенням:

1. Довільне ребро u, u = (a, b) розміщується на стрічці Мебіуса деяким мінімальним вкладенням графа H в N_3 та існує мінімальний по включенню проективно-площинний підграф K графа $H \setminus u$ чи його частина, що задовольняє умові: $(t_K(\{a,b\}, N_3) = 1) \land (t_{K \setminus u}(\{a,b\}, N_2) = 2)$.

2. Існує найменша за включенням множина різних підграфів K_i , яка покриває множину ребер 2-зв'язного графа H, де K – локальний проективно-площинний підграф чи частинний підграф графа $H \setminus e$, гомеоморфний $K_5 \setminus e$ чи $K_{3,3} \setminus e$, де K_5 , $K_{3,3}$ графи Куратовського.

Доведення. Співвідношення 1. Нехай u, u = (a,b), довільне ребро графа-обструкції H для неорієнтованої поверхні N_2 роду 2 та мінімальне вкладення f, $f: H \setminus u \to N_2$, яке розташовує кінцеві вершини ребра u = (a,b) на границях двох кліток $s_1, s_2, s_i \in S_H(N_2, f)$, $S_H(N_2, f) = N_2 \setminus f(H)$, де $a \in \partial s_1, b \in \partial s_2$. Тоді це ребро не може з'єднувати два підграфи графаобструкції H та існуватиме підграф K_5 графа-обструкції H гомеоморфний або K_5 , або $K_{3,3}$, який вкладенням f розміщується на проективній площині із однією приклеєною стрічкою Мебіуса так, що всі його вершини виходитимуть на границю однієї клітки, причому деякі з подвійним доступом. Тоді ребро u = (a,b) буде розміщено на стрічці Мебіуса разом з, принаймні, одним ребром, яке на проективній площині схрещене із u. Зазначимо, що $s_1 \neq s_2$, тобто матимемо рівняння $t_{H\setminus u}(\{a,b\},N_2)=2$, бо у разі однієї клітки $s_1 = s_2$ було б можливо продовжити вкладення шляхом розміщення ребра f(u) в середину клітки s_1 , що суперечитиме визначенню граф-обструкції для неорієнтованої поверхні N_2 роду 2. Тоді існуватиме найменший за включенням локально площинний підграф K графа $H\setminus u$, який на неорієнтованій поверхні N_2 містить всі вершини, що виходять на границі кліток $\partial s_1 \cup \partial s_2$, тобто задовольняє рівності $t_{H\setminus u}(\{a,b\},N_2)=2$. Довизначивши вкладення f шляхом додавання відрізка [a,b] до 2-зв'язного підграфа f(K), матимемо перетин принаймні одного ребра f(u') з [a,b]. Приклеїмо до N_2 стрічку Мебіуса в місці перетину ребер f(u') з ребром f'(u). Тим самим отримаємо мінімальне вкладення $f', f': H \rightarrow N_3$, яке розташовує кінцеві вершини ребра u = (a,b) на границі однієї клітки, та рівність $t_H(\{a,b\},N_3)=1$. Доведення співвідношення 1 закінчено.

Співвідношення 2 доведемо використовуючи вищенаведені позначення для виділення локально площинних підграфів K_i графа $H \setminus u$, який задовольняє умові: $(t_{Ki}(\{a,b\},N_3)=1) \land \land(t_{K_i\setminus u}(\{a,b\},N_2)=2)$. Розглянемо всі можливі випадки для графа $H \setminus u$: 1) існує простий цикл f(z) графа $H \setminus u$, u = (a,b), який містить вершини $a \in \partial s_1, b \in \partial s_2$; 2) не існує простого циклу f(z) графа $H \setminus u$, який містив би вершини $a \in \partial s_1, b \in \partial s_2$.

Випадок 1. Циклом f(z) буде простий цикл, який містить ребра з кінцевими вершинами $a \in \partial s_1, b \in \partial s_2$ та входить до об'єднання границь тих кліток чи псевдокліток s_i , $s_i \in N_2 \setminus f(H)$, i = 1, 2, ..., n, що утворюють ланцюжок з початком в s_1 та кінцем в s_n , $s_n = s_2$, а кожна наступна клітка ланцюжка матиме принаймні одне спільне ребро із попередньою кліткою цього ланцюжка. У виродженому випадку цей ланцюжок кліток складатиметься тільки з двох трикутних кліток чи псевдокліток s_1, s_2 . У графа $H \setminus u$ має існувати найменший за включенням локально площинний підграф K, який задовольняє умові: $(t_K(\{a,b\},N_3)=1) \wedge (t_{K\setminus u}(\{a,b\},N_2)=2)$, бо інакше порушуватиметься умова про H як граф-обструкцію. Тобто мають бути або три ланцюги ненульової довжини, що належать границям кліток ланцюжка і мають спільну кінцеву вершину, або два схрещених на площині діагональних відносно f(z) ланцюги L_1, L_2 ненульової довжини (один з них належатиме до границь кліток ланцюжка, а інший не матиме спільних ребер із границею жодної клітки ланцюжка), які парами своїх кінцевих вершин розділятимуть один одного та пару вершини a, b на f(z). Тоді локально площинний підграф K матиме вигляд $f(z) \cup L_1 \cup L_2$, тобто $f(K) \cong K_4$, та задовольнятиме умові $t_{K\setminus u}(\{a,b\},N_2)=2$ для довільного ребра u = (a,b). У випадку, коли вершини a, b є внутрішніми точками несуміжних ребер графа K, то граф $K + (a,b) \cong K_{3,3}$.

Випадок 2. Нехай не існує простого циклу f(z) графа $H \setminus u$, який містив би вершини $a \in \partial s_1, b \in \partial s_2$. Це означитиме, що видалене ребро u = (a,b) розірвало той простий цикл z' графа H, що за умови 2-зв'язності графа H проходив через вершини a,b. Тоді має бути 2-зв'язний підграф H' графа $H \setminus u$, який має вершину a та простий ланцюг L', який задовольнятиме умові $H' \cup L' \cup u \supseteq z'$. Для 2-зв'язного підграфа H' виконуватиметься наведений вище випадок 1.

Доведення для випадку 2 закінчено. Таким чином для кожного ребра u 2-зв'язного графа H є підграф K_i , $K_i = K + u$, тобто це локально площинний підграф K із добавленим ребром u, принаймні $K + u \cong K_5$ чи $K + u \cong K_{3,3}$. Тоді об'єднання всіх таких K_i покриває множину ребер графа H. Доведення співвідношення 2 закінчено. Доведення теореми 1 закінчено.

Наслідок 1. Граф-обструкція H для неорієнтованої поверхні роду 2 є ф-образом двох квазізірок $St_{n1,n2,...,nk_1}(H_1)$, $St_{m1,m2,...,mk_2}(H_2)$ з центрами – підграфами H_i , $k_i = |H_i|$, $i \neq j, i, j = 1, 2$, де квазізірка може не мати висячих ребер, а у випадку наявності висячих ребер кожна l-та висяча вершина інцидентна nl висячим вершинам тих ребер, що приєднуються кінцевими вершинами до ml' вершин підграфа H_j , де $l = 1, 2, ..., k_1$, $l' = 1, 2, ..., k_2$, $i \neq j, i, j = 1, 2$. Саме ці кінцеві вершини утворюють множину точок приєднання з числом досяжності 2 відносно N_2 та мають наступні властивості для 2-зв'язного H:

а) кожна вершина центру H_i з підмножини точок приєднання приєднана або висячим ребром до однієї вершини підграфа H_j , або двома висячими ребрами до кожної з кінцевих вершин деякого ребра підграфа H_j , або трьома висячими ребрами до кожної вершини підграфа K_3 графа H_j , де $i \neq j, i, j = 1, 2$;

б) кожне ребро підграфа H_i чи H_j є суттєвим при операції його видалення або відносно неорієнтованого роду $\gamma(H_i)$ чи $\gamma(H_j)$, де $i \neq j, i, j = 1, 2$, або відносно числа досяжності $t_{H_i}(X_{ij}, N_2)$ множини точок приєднання X_{ij} , $X_{ij} = X(H_i, H_j)$, квазізірки $St_{n1,n2,...,nk_1}(H_1)$ до графа H_j , де $i \neq j, i, j = 1, 2$, або, як бокове ребро підграфа K_3 , відносно числа багатосторонності $ms_{H_i}(X_{ij}, N_2)$, множини точок приєднання X_{ij} , $X_{ij} = X(H_i, H_j)$, квазізірки $St_{n1,n2,...,nk_1}(H_1)$ до графа H_j , де $i \neq j, i, j = 1, 2$ (рис. 26).

РИС. 26. На картах наведено приклад підграфа *К* графа *H* з теореми 1, вкладеного до елементарного диска проективної площини

Висновок. Методом ф-перетворення графів досліджено структурні властивості 9-ти вершинних графів обструкцій для поверхні неорієнтованого роду 2, а саме – шляхом подання їх як ф-образу кількох графів, гомеоморфних одному із графів Куратовського та принаймні одному площинному чи проективно-площинному графу. Також наведено інші властивості характерні для вкладень скінчених графів до неорієнтованих поверхонь, а саме, що, на відміну від орієнтованих поверхонь, границі кліток не містять повторних ребер.

Список літератури

- 1. Хоменко М.П. ф-перетворення графів. Препр. ИМ АНУ. Киев, 1973. 383 с.
- 2. Хоменко М. П. Топологические аспекты теории графов. Препр. ИМ АНУ. Киев, 1970. 299 с.

В.І. ПЕТРЕНЮК, Д.А. ПЕТРЕНЮК

- 3. Петренюк В.І., Петренюк Д.А., Шулінок І.С. Нова верхня межа орієнтованого роду склейки простих графів. *Теорія оптимальних рішень*. 2018. С. 69–79. <u>http://dspace.nbuv.gov.ua/handle/123456789/144974</u>
- 4. Cashy J. Irreducible graphs for the Klein bottle. Ph.D. Thesis, Ohio State University, 2000.
- 5. Mohar B., Thomassen C. Graphs on Surfaces. Johns Hopkins University Press, 2001.
- 6. Hur S. The Kuratowski covering conjecture for graphs of order less than 10. Phd, Ohio State University, 2008. https://etd.ohiolink.edu/rws_etd/send_file/send?accession=osu1209141894&disposition=inline
- Петренюк В.І., Петренюк Д.А. Нова верхня межа неорієнтованого роду простого графа. Комп'ютерна математика. 2019. 1. С. 10–19. http://dspace.nbuv.gov.ua/handle/123456789/161928

Одержано 02.07.2020

Петренюк Володимир Ілліч,

кандидат фізико-математичних наук, доцент Центральноукраїнського національного технічного університету, Кропивницький, <u>petrenjukvi@i.ua</u>

Петренюк Дмитро Анатолійович,

кандидат фізико-математичних наук, старший науковий співробітник Інституту кібернетики имені В.М. Глушкова НАН України, Київ. <u>guitar_player@ukr.net</u>

UDC 519.85

V.I. Petrenjuk^{1*}, D.A. Petrenjuk²

About Structure of Graph Obstructions for Klein Surface with 9 Vertices

¹ Central Ukrainian National Technical University, Kropyvnytskyi

² V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine, Kyiv

^{*} Correspondence: <u>petrenjukvi@i.u</u>

The structure of the 9 vertex obstructive graphs for the nonorientable surface of the genus 2 is established by the method of φ -transformations of the graphs. The problem of establishing the structural properties of 9 vertex obstruction graphs for the surface of the undirected genus 2 by the method of φ -transformation of graphs is considered. The article has an introduction and 5 sections. The introduction contains the main definitions, which are illustrated, to some extent, in Section 1, which provides several statements about their properties. Sections 2 – 4 investigate the structural properties of 9 vertex obstruction graphs for an undirected surface by presenting as a φ -image of several graphs homeomorphic to one of the Kuratovsky graphs and at least one planar or projective-planar graph. Section 5 contains a new version of the proof of the statement about the peculiarities of the minimal embeddings of finite graphs in nonorientable surfaces, namely, that, in contrast to oriented surfaces, cell boundaries do not contain repeated edges.

Also in section 5 the other properties peculiar to embeddings of graphs to non-oriented surfaces and the main result are given.

The main result is Theorem 1. Each obstruction graph H for a non-oriented surface N_2 of genus 2 satisfies the following.

1. An arbitrary edge u,u = (a,b) is placed on the Mebius strip by some minimal embedding of the graph H in N_3 and there exists a locally projective-planar subgraph K of the graph $H \setminus u$ which satisfies the condition: $(t_K(\{a,b\},N_3)=1)\wedge(t_{K\setminus u}(\{a,b\},N_2)=2)$, where $t_K(\{a,b\},N)$ is the number of reachability of the set $\{a,b\}$ on the nonorientable surface N.

2. There exists the smallest inclusion of many different subgraphs K_i of a 2-connected graph H homeomorphic to the graph K+e, where K is a locally planar subgraph of the graph H (at least K+e is homemorphic to K_5 or $K_{3,3}$), which covers the set of edges of the graph H.

Keywords: graph, Klein surface, graph structure, graph obstruction, non-oriented surface, Möbius strip.