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In the paper, a decision-making situation under
uncertainty is addressed and analyzed, with
emphasis on minimizing Savage's regret function.
The developed algorithms are based on the
generalized gradient projection method with
programmed step size adjustment. Assertions
about the convergence of the corresponding
algorithms are proven.
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METHODS FOR MINIMIZING THE SAVAGE
FUNCTION WITH VARIOUS CONSTRAINTS

When making decisions under uncertainty, Savage's
criterion is sometimes used, or the criterion of minimizing
regrets [1]. Usually, in the literature, this decision situation
is described in matrix language. In other words, both the
number of decision alternatives and the number of states of
nature are finite. Of particular interest are situations where
the admissible domain of decision variants is a convex set,
and the regrets with respect to each state of nature are
expressed by convex functions. In this paper, we propose
numerical methods for minimizing Savage's regret
function, constructed based on the subgradient projection
method with automatic step size adjustment [2, 3]. The
convergence of these methods is demonstrated.

Let on the compact and convex set U in E™ — Euclidean
space n-dimensional, define the functions, convex and
continuous on U,r(u,Qq),...,r(u, Q;), ..., (u, Q,,). The
set Q@ ={0Q4,..,0Q;..,Q} defines the uncertainty
situation, in the sense that any element of this set expresses
a certain "state of nature", which can be produced
uncontrollably by some decision-maker, which can in turn
manage with u variants of U.

Thus, for each state Q; € Q, it will be denoted by
it =r(ug), Q) = Lneizr}r(u’ Q;) — the minimum value of
the function on the domain U, and ”Ei) representing some
element of the set U(;, — the set of minimum points of the
function r(u; Q;).

Remark. In a certain context, r(u, Q;)could be
considered to express some cost or loss caused by the
application of decisionu, when "nature" is pronounced
with its state Q; .

It will be defined with 7(u, Q) = (r(u, Q) — ;") —
the function of regrets, which corresponds to the state Q; ,
and with Rs(u) = rirel?X(f(u’ Q;)), hereafter called the

Savage function. Here I,,, = {i:i = 1,2, ..., m}.

Remark. It is elementary to note that both the regret
function #(u,Q;)and the Savage function R (u)are
convex on U.
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It will be additionally assumed that the sub gradients of the functions r(u, Q;),i € I, , also exist for
all border points U, which, at the same time, are uniformly bounded in U. That is, there exists the constant
Cy, for which [|r;(w, Q)| < €, forallu € Uandalli € I, r;(u; Q;) being any subgradient of the function
1, (u; Q;), which corresponds to point u.

Let the set U is relatively simple, in the sense that for any point z € E™, the projection of z onto U can
be determined exactly [2]. This projection will be denoted I1; (z).

We will consider m+1 iterative processes, which can run in parallel. The first m processes will be called
internal and will determine approximations of the values r;* , i € I,,,; and the (m+1)-th one will be called an
external process, oriented to provide approximations of the value

Rs = minRs () . M)

So, the m+1 parallel (optimization) processes are described as follows:

{”53’1 = Ny (ufy — haw 1) i € I, )
kel = l'IU(uk _ hk . nk)
Here:
nk = {wg), @) /lIraluty @I if iy @) # 0, -
0, otherwise,

k= {(Ré‘ @), /||(rEG)). | it (RE@)). =0, o
0, otherwise.

where (R}‘ (uk)) represents an arbitrary subgradient of the function
u
R§(u) = Illé;?lx[r(u' Q) — r(ué‘i), Q:)], (5)

calculated in the point u=u .
Number strings h;y, by they will respect the conditions [2]:

h(i)k'hk =>0; h(i)kvhk - 0; Z h(i)k!z hk = 0, (6)
k=0 k=0

Let U" — the set of minimum points of the Savage function on the domain U. In compliance with the
conditions listed above, the following statement occurs.

Theorem 1.

lim min [|u® — u*
k—oo u*eU*

=0, lim R¥(uk) = Rg, (7

where R} and R¥ (u) are as defined in (1) and (5), respectively.

Demonstration.

For this, the following two lemmas will be useful:

Lemma 1. Let some vector field U < E™ be defined on the convex set G: U — 2Y, which maps to each
element u € U a non-empty set of vectors G (u) (concisely, u — G(u)) and there exists a compact set,
denoted by U™, which satisfies the following condition: for a certain number € > 0, there exists the number
6 > 0,suchthatforallu e U\ V(U" ¢/2),u* € U and g(u) € G(u) the inequality occurs:

w-uw,gw) _
llu—wrll - llg@ll —

@®)
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If the string were considered:
uk*t = My (uk — hy - nk) 9)

with n* = g(u®)/|lg(u®)||, hk = 0, hy > 0,X5-o hy = o, then for any point v’ € U (||u’|| < ),
starting with some K, for all k > K, u* € V(U*, ) — the spherical neighborhood of radius ¢ of the set U*;
that is V (U™, €) represents the union of all neighborhoods of radius &, V(u*, &),V u* € U*.

Proof of Lemma 1.

The expression will be analyzed |[u*+! — u*||*, where u* € U".
Obviously, it takes place:

ot = = e = [Pl = P = 2 = + ()’

Two stages will be considered.
Stage 1. We will argue the existence of a substring {u*i};.,, which is totally contained in the set
V (U, /2). For this purpose, the method of reduction to the absurd will be applied.

According to inequality (8), we get |[uf*t?—u” 2 < ||lu* —u ? 28 hy |[u* — u*
< ||u* — u*|| — Sehy + hE, for all k > Ky, where K; is a certain fixed number.

Because h;, — 0, it follows that the number exists K,, so that h, < 6¢/2, for all k = K,. Then, for
all k = K, = max{K;, K,}, the series of inequalities is true:

+hi <

ot | < [ = | = e — i) < [~ = e < o )~ Bl

The right-hand side of this series of inequalities, for certain sufficiently large values of k, becomes
negative, moreover, it decreases indefinitely. An obvious contradiction is obtained.

Therefore, there exists such a substring {u*};., of the string {u*},., , which is completely contained
inthe set V(U*, &/2).

Stage 2. From the fact that h;, — 0, it follows that and u*** — u* - 0.

Without restricting the generality, it can be considered that the previously mentioned number Ky is such
that [|u*** —u¥|| <~ forall k > K,. Let | be any number from the set of natural numbers for which:

uktev (U*,z),and ukitlt g v (U*,%) and [[ukftt —uki|| < /2.

ukirl — gk oy — ukt — || < e

< ||ukl+1 - ukl” + min
u*eu*

= min

Then: min ||ukl+1 —u*
. weU*

u*eu

But, because, at the same time h;, < 8¢/2, for k = K,, results:

2 2 Se 2 : 2 2
|uket? —ur||” < |juftt —ur||” - — hig1 < |lukett — w5, |t = || < < JJuftt =]
. i & . . . . i .
So, if ukiti ¢ V(U*'E)’ it is obtained that min |lufit) —ur|| < min ukirl —y*|| < &, for all
u*eu* u*eu*

j =2, where ], = K1 — K.

Lemma 1 is proved.

Lemma 2. Leti € I, = {1,2,...,m}, and {a;} and {b;} — two arbitrary numeric strings. The following
inequality holds:

maxa; — maxbi| < max|a; — b;|.
(€L, i€l i€l

Demonstration. Leta; = maxa;, b;, = maxb;.
1 i€, 2 i€y,
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1. Ifi; =i, , the inequality is obvious.

2. Letiy #1i,.

Fora; = b, results:0 <a; —b;, <a; —b;,.
If biz = ai, , it is obtained that 0 < biz —a; biz —ay,.

SO, |Cli1 - bizl < max“ail — bi1|' |al~2 — bizl} < %?Xlai — bll

b;,
<

Lemma 2 is proved.

Proof of Theorem 1.

From the previous assumptions it follows that the function Rg(uw) is convex and continuous on U.

Let U” — the set of minimum points of the function R, (), and u” an arbitrary element of U". Based on
continuity Rg(u) on U, it follows that for anything £ > 0 the number can be indicated A> 0, such that:

Ry(u) — Rg(u*) = 2A (10)
forall ue U\ V(U /2).
Based on the convergence of each internal process [3, 4], it follows that:

min
u(i)EUi

- uzi)” - 0and r(ué‘i), Q) -

So, starting with some K1, for all k > K* and all i € I,,, one would obtain, for A indicated above, the
inequality: (ug;), Q;) — 1 < A/2.
For any u € U will be considered

|R§(u) - Rs(u)|:

rirelﬁi([r(u, Q) — r(u(l), Q; )] max [r(u, Q;) —r]|.

Noting a; = [r(u, Q) — r(uﬁ-), Ql-)], b; = [r(u, Q;) — r;’], for each u fixed in U, and calling on Lemma
2, one obtains:

A
|R¥(w) — Rs(w)| < fig?xﬂai —bl) = YL.TEI?X(|T(116-), Q) —r]) < > (11)
From inequalities (10) and (11), forall u € U \ V(U*, €/2), it follows that
3
R¥(u) — Ry(u) = EA, forall k > K*.

Since inequality (11) also holds for u = u*, it follows that for k > K* and all u € U \ V(U*,&/2) the
relationship will take place:
R¥(w) — REF(u™) = A. (12)

Obviously, for vk = 0,1, ..., fonction R§ (u) is convex on U and, from its construction it follows that at
any point u € U there is its subgradient [3], g¥ (u) and ||g¥ (w)|| < C;. The set U being compact suggests
the existence of the constant C,, for which m%)L(]Hu —v| £C,.

uv

So, for k>K?*, from (12) it follows that —A > R¥(u*) — RF(w) = (u* —u, g¥(w)) for all
u€eU\V(U*e/2),or, it follows that
(u—u*, gkw)) = A. (13)
From (13) and the recently established, we get:
(c-wigk@)
lw —wll - [|gf @~ llu—wll - [|g§ @) = €1 G

=5>0. (14)
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So for everyone k > K(K?, of course it depends €) and all u € U \ V(U*, £/2) inequality occurs

(- gk) _
e =l gkl =

Noting n* = g¥(u*)/||g¥")|| and parsing the string u* for k > K, the conditions of Lemma 1 are
observed. Therefore, the number will be found K, > K?, so that all u* € V(U*, ), as soon as k > K. By
virtue of the fact that the number & > 0 can be taken however small, it follows that Ilim rrglrll uk—u*|[=0

—00 U
and, because the functions R¥ (u) are continuous on U, it follows that Jim R¥ (uk) = Ry(u*) = R;.

Theorem 1 is proved.
Next, the problem addressed will be analyzed in a more general context than the one formulated in
aspect (1). Namely, whether, in addition, it is necessary to comply with all the restrictions of the form:

F(w) <0,j€J, = {12, ..t}

All functions F;(u) < 0, € J, , are assumed convex and continuous on the convex compact U.
Considering F(u) = rrlee}xl?j(u), the researched model would appear as follows:
JEJt

R;(u) » min
Fw) <0, (15)
u€eu.

Two cases will be analyzed.

Case A._Assuming the existence of the solution to the problem (15), and thus to each of the m internal
problems, the "lenient" variant will be investigated, in which the fulfillment of the restriction will be required

Fw) <& &> 0. (16)

The quantity & will be called threshold or tolerance level.
Therefore, in this case, instead of problem (15), the problem in the form (1), (16) will be solved, the
solutions of which could be considered approximate solutions of the model (15).
Remark. Internal issues are resolved with the same "threshold of tolerance" although each of them
might have its own threshold of tolerance.
The proposed numerical algorithm includes all actions (2)—(6) with the following specification for (3)
and (4):
ra (Ul Q) / |Ini(uley, Q|| if F(uy) < £and i (uy, Q) # 0,
G =19/ |lg@l)|l, if Fuly) > & and g(uky) # 0, (17)
0, in the rest of the cases. Here i € I,,,.

Each of the internal problems is solved with the necessary precision [4], to guarantee the fulfillment of
inequality (12) forall k > K* and all u € U \ V(U*, £/2) for which F(u) < 0.

gE@)/||gé @ )|, if F(u*) < & and g§ () # 0,
n' = g(uk)/”g(uk)“,if F(uk) > &and g(uk) * 0, (18)

0, in the rest of the cases.

It will be admitted that the subgradients g¥(u) and g(u) of the functions R¥(u) and F(uw),
correspondingly, are uniformly bounded on the set U of the same constant C;.
In the conditions listed, it has their affirmation:
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Theorem 2. For any element u° € U and any number & > 0, there is such a number £ > 0, so that,
except for a finite number, all terms of the series {u*}, generated by the algorithm (2), (3), (6) are contained
in the set V(U™, €), where U™ is the totality of the solutions to the problem (15).

Demonstration.

Be the number & > 0 however small (but considered fixed) and the crowd U\ V(U* &/2) # @.
Function F(u) being continuous on U is also uniformly continuous on this set. For this reason, there is
obviously a positive number & , however small, for which in turn there is the number A> 0, so that for all
k > K (see how (12) was obtained in the theorem 1):

RE(uw) — RF(u*) = A, if F(u) < 0and, always,
A
RE(u) — RE(u*) = > if F(u) < &
Analogously, how the inequality (14) was obtained, is deduced:
@-w,gf@) _
lu —wl - [lg§ )| ~ 2C1- G

fair inequality forallu € U \ V(U*,&/2) , k = K* and for which the relationship takes place F(u) < &.
Now so be it F(u) > & ,soand F(u) — F(u*) > ¢.
Or,—é>FW")—Fuw) =W —ug).Or,(u—u",gu) > ¢
If it is admitted that ||g(w)|| < C; for all u € U, then it follows that

(w-wgw) _ £ _
Tu =T Tg@ll = ¢ G,

"
Introducing the notation § = min{&,, 8,}, is obtained % > &, forallu € U\ V(U* ¢/2) and all

u—u*|| —

=61>0,

5.

k > K*. The vector n* is calculated according to (18).

Theorem 2 is proved, since both Lemma 1 and Theorem 1 confirm the correctness of its statement.

Remark. The algorithm stops if, at some iteration k, the vector n* = 0. In this situation two cases
would be possible:

1. Orinpointu* inequality occurs F(u¥) < £and g¥(u*) = 0; thus u* is one of the optimal solutions
of problem (1), (16).

2. Or in point u* inequality occurs F(u*) > & and g(u*) = 0, which means that the point u* is the
minimum point for the function F () on the domain U and therefore the problem (1), (16) has no admissible
solutions.

Case B. Problem (15) will be solved, using the same ideas and procedures as in case A, only that at
each iteration k the value of the number &, will be changed, in other words & will be assigned the value &,
which, together with the increase of K, will tend to zero, respecting, at the same time, some additional
requirements. More specifically, the following theorem holds.

Theorem 3. Let h;yx, hy, & meet the requirements:

h(i)k'hk > 0, h(i)klhk d 0, c‘:Tk > 0, ETk d 0, h(i)k/gk;hk/gk d 0,

Zh(l’)k c‘:Tk = OO,Z hkgk = 00, (19)
k=0 k=0

If problem (15) has a solution, then, under the conditions of compliance with (17)—(19), statements (7)
hold.
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Demonstration.
Initially, a clarification will be made regarding Lemma 1, for which the same statement holds, only
under weaker conditions, namely:

for the points u*, constructed according to (9), and belonging to the set U \ V (U%) inequality occurs

W —u,gw))
luk =l - llg @l
for any u* € U* and any two numeric strings {h; }, {8x } who owns the properties:

hk = O,hk d 0l6k g O,hk/5k d O,Z hkdk = 00,
k=0

Now be the point u° given (arbitrary from U) and the number & > 0 however small, but fixed. Because
& >0and & — 0, it follows that for some natural number K' and for all, u* € U* and all
uk € U\ V(U* &/2) for which k > K*, two cases are possible:

1. F(uk) < &. Inthis situation there exists the number A > 0 such that R¥(u*) — RE(u*) = A, (the
reasoning being analogous to the one by which the inequality (12) was obtained), which implies the
observance of the inequality

@ —w,gf@y) A
k= wll-Jlgk )| =7 GG

2. F(u®) > &,. Because F (u*) > &, asintheorem 2, but taking into account that £ = &, it is obtained

(20)

that

@ —uw,gw) _ & _
= w T gl = ¢ ¢,

For the reason that £ — 0, when k — oo, it follows that a number can be indicated K > K, so that for
all k>K, 5, <5. Which means that, for F(u*) < &, but also for F(u*) > &, inequality occurs
(uk—un*)

[k —u||

From the conditions of theorem 3, it is obtained:

8k > 0,8, = 0; h /8, = 0,Y -k hi 6, = oo conditions, which together with those obtained above,
(20), (21), ensure the convergence of the applied algorithm:

uk —u*|| = 0,1im R¥(u*) = R} = min R}(w).

8. 1)

> 6;,assoonask = K.

lim min

k—-oo u*ev*

Here min R, (u) — represents the minimum value of the function R¢(uw) in the model (15).
Theorem 3 is proved.

Conclusions. The described algorithms can be used in the decision-making process under conditions
of uncertainty, when nature manifests itself through a finite number of possible states, and the controllable
factors belong to compact and convex sets, at the same time the decision-making criterion is oriented
towards minimizing maximum regret. The concordance between the steps h;,, hy and the tolerance
threshold & is essential from the point of view of ensuring the convergence of these algorithms both in
theory and in application.
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Introduction. When making decisions under uncertainty, Savage's criterion is sometimes used, or the
criterion of minimizing regrets [1]. Usually, in the literature, this decision situation is described in matrix
language. In other words, both the number of decision alternatives and the number of states of nature are finite.
Of particular interest are situations where the admissible domain of decision variants is a convex set, and the
regrets with respect to each state of nature are expressed by convex functions. In this paper, we propose numerical
methods for minimizing Savage's regret function, constructed based on the subgradient projection method with
automatic step size adjustment [2, 3]. The convergence of these methods is demonstrated.

Goal. In the article, the Savage function is defined as a function that expresses the maximum regret value,
assumed to be a convex function with respect to the decision factors. This function measures the effectiveness of
each decision relative to the set of states of nature. It is important to note that computing the values of these
functions is complex because of the need to know the optimal solution for each state of nature. This difficulty is
successfully overcome in the process of solving the problem of minimizing functions on convex sets, thanks to
parallel solutions of m "internal" algorithms based on the number of states of nature, and one external algorithm,
aimed at minimizing the Savage function. Each of the m+1 algorithms represent modifications of the subgradient
projection method with a programmable way of adjusting the step size. Depending on the complexity of the
constraints and the required precision, three theorems have been proven, confirming the convergence of the
investigated methods.
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Results obtained. Constructive numerical algorithms have been developed for determining optimal
decision alternatives under uncertainty, when the number of states of nature is finite, the admissible domain of
control factors is convex and compact, and the Savage regret function serves as a decision criterion. The
convergence of the corresponding algorithms to the set of optimal solutions has been proven, without knowing
the exact values of the Savage function. Instead, estimates obtained from parallel runs of algorithms were used,
aimed at determining optimal solutions for each state of nature.

Conclusions. Uncertainty poses significant difficulties in designing and making decisions. Any decision
made under uncertainty represents a certain risk or a certain regret. In cases where the number of states of nature
is finite, the decision domain is convex, the target function with respect to each state of nature is convex, and the
Savage regret function is adopted as the decision criterion, the decision-making problem can be successfully
solved using numerical algorithms based on the generalized gradient method. The implementation of the
algorithm is relatively simple, and the fields of application can be very diverse.

Keywords: uncertainty, decisions, Savage function, optimization.
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Beryn. IIpu npuiHATTI pillleHb 33 YMOB HEBU3HAUCHOCTI 1HOJI BUKOPUCTOBYIOTH Kputepiil Ceimka abo
KpuTepii MiHiMizamii BTpar [1]. 3a3Buuail y miTepaTypi L CHTyallisi NPUHHATTS PIMICHHS OMUCYETHCS
MaTpPUYHOIO MOBOIO. Y IIbOMY BHIAQJKY SIK KUIBKICTh aJbTEpPHATHUB PillleHb, TaK 1 KiAbKICTh CTaHIB IPUPOIH
ckinueHi. OCOOJNUBHI iHTEpEC TPEACTABIAOTH CUTYyallil, KOJU 1 JAOMYCTHMa O0JacTh BapiaHTIB PIillICHb €
OITyKJIOI0 MHOXHMHOIO 1 BTPaTH IIOJO KOXKHOTO CTaHy MPUPOIM BUPAXKAIOTHCS OMYKIUMH (QyHKLisIMU. Y Wil
po0OTI MM MPOMOHYEMO YHCENIbHI MeToau MiHimizamii ¢ynkiii Brpar CeBimka, sIKi MOOyIOBaHI Ha OCHOBI
METOJy MpPOEKLil cyOrpafieHTy 3 aBTOMAaTHYHUM HaJaIITYBaHHAM po3Mipy kpoky [2, 3]. IIpogeMoHCTpoBaHO
301KHICTh [[UX METOLIB.

Hinb. ¥V crarTi Qyskuis CeBimpka BU3HAUAETHCS K (QYHKIIS, 110 BUPakae MaKCUMaJIbHE 3HAUCHHS BTPAT
Ta € ONMyKJIow (QYHKIIE MO0 (aKTOpiB MPUHAHSATTA pimieHb. g QyHKIist — Mipa epeKTHBHOCTI KOXHOTO
pillieHHS LIOJI0 MHOXXHMHHU CTaHiB NPUPOAU. BakiMBO 3a3HA4MTH, M0 OOYMCIIEHHS 3HAYCHb BiJIOBITHHX
(yHKIIHA TOCUTH CKIIJHE, Yepe3 HEOOXIAHICTh 3HATH ONTUMAJIbHE PILICHHS I KOXKHOTO CTaHy npupou. 1s
CKJIaJIHICTh YCIIIIIHO JOJIAETHCS y TPOLIECi PO3B's3aHHs 3a4avi MiHiIMi3alil (yHKLIA Ha OMYKJIMX MHOKHHAX
yepe3 MapalielibHe 3aCTOCYBaHHS M «BHYTPIIIHIX» aNrOPUTMIB 32 KiJIBKICTIO CTaHIB HPUPOAU Ta OIHOTO
30BHILIHBOTO ANTrOpUTMy Ui MiHiMizawii ¢ynkuii Cesimka. Koxken 3 m+1 anropuTMmiB — 1e Moaudixaiis
METOIy MPOEKLii cyOrpamieHTa 3 MPOrpaMOBAHMM CIIOCOOOM PEryIIOBaHHs BEIMYMHU KpOoKy. byno nosemeHo
TPU TEOPEMH, 110 MiATBEPAKYIOTh 30DKHICTh JOCIIKYBAHUX METOJIIB, 3aJIEXHO BiJl CKIaIHOCTI OOMEXEeHb Ta
BiJl HEOOXiJJTHOT TOUHOCTI pe3yJbTarTy.

OTtpumaHi pe3yabTaT. Bynmu po3poOiieHi YicenbHi arOpUTMH 3HaXODKEHHS ONTUMATEHUX PO3B’SI3KiB
3a7a4 32 YMOB HEBH3HAUYEHOCTI, KOJIM KiJIbKICTh CTaHIB NIPUPOAH CKiHUECHA, JOMycTUMa 00aacTh il (akTopi
VIIPaBJIiHHS OMyKJa i KOMIIAKTHA 1 SIK KpuTepiid BuKkopuctano ¢yHkmiro Brpat CeBimka. [loBeneHa 301KHICTh
BIJITIOBIIHUX aJITOPUTMIB 0€3 3HAHHS TOYHUX 3HaYCHb QPYyHKIIT CeBika 10 MHOKHHHU ONTUMAILHUX PO3B’S3KiB.
BukopucTaHi OLIHKH, OTPEMaHi B pe3yJbTaTi MapaeIbHOTO 3aIlyCKy alrOPUTMIB, OPIEHTOBAHMX Ha BU3HAYCHHS
ONTHMAJILHUX PO3B’A3KY AJISI KOKHOTO CTaHy NPHUPOAU.

BucHoBku. HeBr3HaueHICTh CTBOPIOE 3HAYHI TPYAHOLII B MPOEKTYBaHHI i MPUHAHATTI pimieHs. byap-sake
pilIeHHs, IPUHHATE 32 YMOB HEBU3HAUCHOCTI, HEce MEBHUI PU3HK 4M MEBHI BTpaTH. Y pa3i, KOJIM YHUCIIO CTaHIB
NPUPOJH CKiHYEeHe, 00JIacTh PO3B’SI3KIB OIMYKIIA, IiTboBa (GYHKIIS VI KOXKHOTO CTaHy HMPHPOIM OMyKIIa i K
KpUTEpiil MpUHHATTS pilieHHs BUKopucTana ¢yHkuis BTpar CeBimxa, 3a1a4a NPUHHATTA pillIeHHs MOXKe OyTH
YCIIIITHO PO3B’si3aHa 3 BUAKOPUCTAHHSIM YHCEIbHUX AITOPUTMIB, TOOYIOBAHUX HA OCHOBI METO/Y y3aralbHEHOTO
rpanienTa. Peanizanist anropuTMiB BiTHOCHO IIPOCTa, a cepa 3aCTOCYBaHHS MOXKe OyTH AyKe pi3HOMaHITHa.
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