2023, issue 2, p. 55-68

Received 11.07.2023; Revised 22.07.2023; Accepted 25.07.2023

Published 28.07.2023; First Online 18.08.2023

https://doi.org/10.34229/2707-451X.23.2.6

Previous  |  FULL TEXT  |  Next

 

MSC 68U15

Mathematical Methods of Natural Language Processing in the System of Operative Determination of the Level of Tension in Society

Maksym Shchoholiev 1 * ORCID ID favicon Big,   Oleh Andriichuk 2

1 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv

2 Institute for Information Recording of National Academy of Sciences of Ukraine, Kyiv

* Correspondence: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Introduction. The most important factors causing an increase in the level of tension in society are crisis phenomena and information operations. Today, sociological surveys are considered the main way to determine the level of tension that arises in some group of people in connection with a certain event. However, this method does not allow obtaining detailed information about the dynamics of changes in tension associated with certain news events and the impact of these news events on the general level of tension in society, which complicates the decision-making process by government officials in crisis situations.

The purpose of the work is to increase the situational awareness of representatives of state institutions regarding the current level of social tension provoked by crisis phenomena, news events or information operations. The information obtained will help government officials to make quick decisions to overcome these crisis phenomena and counter disinformation.

The main task of the research is to develop the architecture and mathematical support of the system of operative determination of the level of tension in society based on data from social networks.

Results. The architecture and mathematical support of the system of operative determination of the level of tension in society were developed. An example of the application of this system to determine the level of tension provoked by one news publication is demonstrated. The main advantages and disadvantages of the developed system, as well as directions for further research, are determined.

Conclusions. The developed system of operative determination of the level of tension in society helps to quickly identify news events and news publications that have the greatest impact on increasing the level of social tension across the country at certain specific moments of time. The use of a system based on social networks makes it possible to build on the basis of current data such assessments, which can be used to study the dynamics of changes in social tension associated with a certain news event or news publication.

 

Keywords: level of tension in society, social networks, sentiment analysis, TF-IDF, Word2vec, neural networks.

 

Cite as: Shchoholiev M., Andriichuk O. Mathematical Methods of Natural Language Processing in the System of Operative Determination of the Level of Tension in Society. Cybernetics and Computer Technologies. 2023. 2. P. 55–68. https://doi.org/10.34229/2707-451X.23.2.6

 

References

           1.     Shchoholiev M., Andriichuk O., Tsyganok V., Tretynyk V. Decision-making and computational linguistic tools application for overall estimation of the level of social tension. Journal of Physics: Conference Series. 1780. 9 p. https://doi.org/10.1088/1742-6596/1780/1/012017

           2.     Shchoholiev M.O. Methods of decision support and computational linguistics for determination of the general assessment of the level of tension in society. Prykladna matematyka ta kompiutynh. PMK, 2022 : XV nauk. konf. mahistrantiv ta aspirantiv, Kyiv, 16–18 lyst. 2022 r. : zb. tez. dop. 2022. P. 192–200. (in Ukrainian)

           3.     Rudachenko O., Klebanova T. Modern approaches to the analysis of social tension. Naukovyi visnyk Uzhhorodskoho natsionalnoho universytetu. Seriia: Mizhnarodni ekonomichni vidnosyny ta svitove hospodarstvo. 2020. 30. P. 140–144. (in Ukrainian)

           4.     Slyusarevskyy M.M., Chunikhina S., Flaherty M. Social Tension as a macro indicator of the psychological well-being of society. Wiadomości Lekarskie. 2021. 74 (11), part 1. P. 2813–2817. https://doi.org/10.36740/WLek202111123

           5.     Artemov G., Aleinikov A., Daur A., Pinkevich A. Social Tension: the Possibility of Conflict Diagnosis (on the Example of St. Petersburg). Economics and Sociology. 2017. 10 (1). P. 192–208. https://doi.org/10.14254/2071-789X.2017/10-1/14

           6.     Baranova G., Frolov V., Kondrashyn A. Features of social tension in the regions of Russia. Sotsiologicheskie issledovaniya (in Russian). 2011. 6. P. 48–55.

           7.     Andrienko O., Mordovtsev S. Integral assessment of tension in regions. Socio-Economic Problems and the State. 2011. 13(2). P. 161–168. http://nbuv.gov.ua/UJRN/Sepid_2015_2_21

           8.     Yatsenko L., Kolomiiets O. Regional aspect of social tensions in Ukraine: state, factors of formation and ways of overcoming. Analytical report. 2015. https://niss.gov.ua/sites/default/files/2015-09/socialna_napruzhenist-fc95d.pdf

           9.     Byikovskiy V. Social tension at the municipal level: a methodology for assessing the work of the administration. Sotsiologicheskie issledovaniya (in Russian). 2005. 10. P. 22–26.

       10.     Iqbal A., Amin R., Iqbal J., Alroobaea R., Binmahfoudh A., Hussain M. Sentiment Analysis of Consumer Reviews Using Deep Learning. Sustainability. 2022. 14 (17). https://www.mdpi.com/2071-1050/14/17/10844

       11.     Sri Devi T., Dhanalakshmi R., Sankar S. An Improved Framework for Sentiment Analysis for Collage Rewiews. International Journal of Advanced Trends in Computer Science and Engineering. 2020. 9 (2). P. 1959–1963. https://doi.org/10.30534/ijatcse/2020/162922020

       12.     Bhimanadham H., Areti S. A., Kolluri B. S., Yanam P., Peda Gopi A. Sentimental Analysis on Movie Review System using deep learning approach. Juni Khyat. 2021. Vol. 11, issue 1. P. 371–380. http://junikhyatjournal.in/no_1_Online_21/47.pdf

       13.     Sri Lalitha Y., Vijendar Reddy G., Swapnika K., Akunuri R., Jahagirdar H. K. Analysis of Customer Review using Deep Neural Network. 2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR). 2022. 5 p. https://doi.org/10.1109/ICAITPR51569.2022.9844183

       14.     Bekesiene S., Smaliukiene R., Vaicaitiene R. Using Artificial Neural Networks in Predicting the Level of Stress among Military Conscripts. Mathematics. 2021. 9 (6). 626. 23 p. https://doi.org/10.3390/math9060626

       15.     Donchenko D., Ovchar N., Sadovnikova N., Parygin D., Shabalina O., Ather D. Analysis of Comments of Users of Social Networks to Assess the Level of Social Tension. Procedia Computer Science. 2017. 119. P. 359–367. https://doi.org/10.1016/j.procs.2017.11.195

       16.     Naga Mounika S., Kanumuri P. K., Narasimha rao K., Manne S. Detection of Stress Levels in Students using Social Media Feed. Proceedings of the International Conference on Intelligent Computing and Control Systems (ICICCS 2019). 2020. P. 1178–1183. https://doi.org/10.1109/ICCS45141.2019.9065720

       17.     Chakraborty S., Talukdar M. B. U., Adib M. Y. M., Mitra S., Alam Md. G. R. LSTM-ANN Based Price Hike Sentiment Analysis from Bangla Social Media Comments. 2022 25th International Conference on Computer and Information Technology (ICCIT). 2023. P. 733–738. https://doi.org/10.1109/ICCIT57492.2022.10055290

       18.     Selvadass S., Malin Bruntha P., Priyadharsini K. Stress Analysis in Social Media using ML Algorithms. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). 2022. P. 1502–1506. https://doi.org/10.1109/ICSSIT53264.2022.9716396

       19.     Ahmed U., Lin J. C.-W. Deep Explainable Hate Speech Active Learning on Social-Media. IEEE Transactions on Computational Social Systems. 2022. P. 1–11. https://doi.org/10.1109/TCSS.2022.3165136

       20.     Danuri M. S. N., Rahman R. A., Mohamed I., Amin A. The Improvement of Stress Level Detection in Twitter: Imbalance Classification Using SMOTE. 2022 IEEE International Conference on Computing (ICOCO). 2023. P. 294–298. https://doi.org/10.1109/ICOCO56118.2022.10031684

       21.     Ghosh S., Anwar T. Depression Intensity Estimation via Social Media: A Deep Learning Approach. IEEE Transactions on Computational Social Systems. 2021. 8 (6). P. 1465–1474. https://doi.org/10.1109/TCSS.2021.3084154

       22.     Sharma C., Saxena P. Stress Analysis for Students in Online Classes. 2021 Grace Hopper Celebration India (GHCI). 2021. 5 p. https://doi.org/10.1109/GHCI50508.2021.9514059

       23.     Cheng L.-C., Tsai S.-L. Deep Learning for Automated Sentiment Analysis of Social Media. 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). 2020. P. 1001–1004. https://doi.org/10.1145/3341161.3344821

       24.     Manning C.D., Raghavan P., Schütze H. Introduction to Information Retrieval. Cambridge University Press. 2008. 506 p. https://doi.org/10.1017/CBO9780511809071

       25.     Mikolov T., Chen K., Corrado G., Dean J. Efficient Estimation of Word Representations in Vector Space. arXiv:1301.3781v3. 2013. 12 p. https://doi.org/10.48550/arXiv.1301.3781

       26.     Mikolov T., Le Q. V., Sutskever I. Exploiting Similarities among Languages for Machine Translation. arXiv:1309.4168v1. 2013. 10 p. https://doi.org/10.48550/arXiv.1309.4168

       27.     Rong X. word2vec Parameter Learning Explained. arXiv:1411.2738v4. 2016. 21 p. https://doi.org/10.48550/arXiv.1411.2738

       28.     Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagation errors. Nature. 1986. P. 533–536. https://doi.org/10.1038/323533a0

 

 

ISSN 2707-451X (Online)

ISSN 2707-4501 (Print)

Previous  |  FULL TEXT  |  Next

 

 

            Archive

 

© Website and Design. 2019-2024,

V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine,

National Academy of Sciences of Ukraine.