2023, issue 1, p. 74-88
Received 20.04.2023; Revised 24.04.2023; Accepted 25.04.2023
Published 28.04.2023; First Online 23.05.2023
https://doi.org/10.34229/2707-451X.23.1.7
UDC 517.9:621.325.5:621.382.049.77
Neural Network Component of Modern Information System on Mobile Platforms: LPI Cognitive Radar System
Mykola Коsovets 1 * , Lilia Tovstenko 2
1 Scientific-production enterprise “Quantor”, Kyiv, Ukraine
2 V.M. Glouchkov Institute of Cybernetics of the NAS of Ukraine, Kyiv
* Correspondence: This email address is being protected from spambots. You need JavaScript enabled to view it.
The problem of building modern systems for collecting, processing and presenting information for moving platforms, characterized by the presence of a neural network with deep learning, sensors with preprocessing, systems processing and presenting information, is considered. In modern systems the physics of the processes does not change, and accordingly, the algorithm for extracting signals from under the noise doesn't change either but is supplemented by a neural network that learns in the process of processing information to perform an applied task. Implementation example shown the introduction of artificial intelligence technology for the design a cognitive radar on a moving platform facilitates the transition from adaptive systems to cognitive ones.
Keywords: artificial Intellect, deep learning, neural network, cognitive radar, multiprocessor, Frequency modulation continuous wave, Radar Cross-Section, Solid State Transmitter.
Cite as: Коsovets M., Tovstenko L. Neural Network Component of Modern Information System on Mobile Platforms: LPI Cognitive Radar System. Cybernetics and Computer Technologies. 2023. 1. P. 74–88. https://doi.org/10.34229/2707-451X.23.1.7
References
1. Barkat M.On adaptive cell-averaging CFAR radar signal detection. Electrical Engineering and Computer Science. Dissertations. 1987. 276. https://surface.syr.edu/eecs_etd/276 (accessed: 20.04.2023)
2. Kosovets M., Tovstenko L. The Practical aspect of using the Artificial Intellectual Technology for building a multidimensional function CFAR for smart-handled LPI Radar. Problem of Programming. 2020. No. 2–3. UkrPROG’2020. 16-17 Sept. 2020. Kyiv, Ukraine. P. 304–312. http://dspace.nbuv.gov.ua/handle/123456789/180476
3. Han X., Chen S. Open-Set Recognition of LPI Radar Signals Based on Deep Class Probability Output Network. 2022. IEEE 8th International Conference on Computer and Communications (ICCC). 2022. Publisher: IEEE. https://doi.org/10.1109/ICCC56324.2022.10065669
4. Avdeyenko G., Narytnik T. Design of the Short-range FMCW Radar of the Terahertz Band. 2021 IEEE International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo). 2021. IEEE. https://doi.org/10.1109/UkrMiCo52950.2021.9716617
5. Ren Z., Xiong Y., Li S., Wang D., Peng Z. Sub-Sampled Two-Dimensional SAR Imaging Method Based on MIMO FMCW Radar. 2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD). 2020. IEEE. https://doi.org/10.1109/ICSMD50554.2020.9261629
6. Deiana D., Suijker E.M., Bolt R.J., Maas A.P.M., Vlothuizen W.J., Kossen A.S. Real time indoor presence detection with a novel radar on a chip. 2014 International Radar Conference. IEEE. https://doi.org/10.1109/RADAR.2014.7060375
7. Wei G., Zhou Y., Wu S. Detection and localization of high speed moving targets using a short-range UWB impulse radar. 2008. IEEE. Radar Conference. IEEE. https://doi.org/10.1109/RADAR.2008.4720766
8. Liang Y., Liang X., He Y., Han W., Ge S. A novel ground moving target parameters estimation method for FMCW SAR. 2016 CIE International Conference on Radar (RADAR). IEEE. https://doi.org/10.1109/RADAR.2016.8059541
9. Giusti E., Martorella M. Range Doppler and image autofocusing for FMCW Inverse Synthetic Aperture Radar. 2009. International Radar Conference "Surveillance for a Safer World" (RADAR 2009). IEEE. https://ieeexplore.ieee.org/document/5438485
10. Shi S., Wang Y., Wang F., Zhou J. LPI Performance Optimization Scheme for a Joint Radar-Communications System. 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM). https://doi.org/10.1109/SAM48682.2020.9104362
11. Vakili M., Khosrojerdi S., Aghajannezhad P., Yahyaei M. A hybrid artificial neural network-genetic algorithm modeling approach for viscosity estimation of graphene nanoplatelets nanofluid using experimental data. Int. Commun. Heat Mass Transf. 2017. No. 82. P. 40–48. http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.02.003
12. Kosovets M., Tovstenko L. Development of cognitive Radar Architecture. Problem of Programming. 2022. No. 1. P. 63–75. http://dspace.nbuv.gov.ua/handle/123456789/186204
13. Rudys S., Laučys A., Udris D., Pomarnacki R., Bručas D. Functionality Investigation of the UAV Arranged FMCW Solid-State Marine Radar. J. Mar. Sci. Eng. 2021. 9 (8). 887; https://doi.org/10.3390/jmse9080887
14. Kosovets M., Tovstenko L. Terahertz Radar of Image to study the Properties of Materials. Journal «Zvjazok». 2018. No. 3. P. 40–46. http://con.dut.edu.ua/index.php/communication/issue/view/116
15. Park D.H., Bang J.H., Park J.H., Kim H.N. A Fast and Accurate Convolutional Neural Network for LPI Radar Waveform Recognition. 2022. 19th European Radar Conference (EuRAD). https://doi.org/10.23919/EuRAD54643.2022.9924721
16. Plata S., Wawruch R. CRM-203 Type Frequency Modulated Continuous Wave (FMCW) Radar. 2022. Conference Paper Publisher: IEEE. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. 2009. 3 (3). P. 311–314. https://www.transnav.eu/Article_CRM-203_Type_Frequency_Modulated_Plata,11,171.html
17. Kosovets M. Generating a Test configuration with absorber 3D Tz FMCW Imagеr Radar. Journal «Zvjazok». 2017. No. 1. P. 49–57. http://con.dut.edu.ua/index.php/communication/article/view/1440
ISSN 2707-451X (Online)
ISSN 2707-4501 (Print)