2024, issue 1, p. 5-17

Received 12.12.2023; Revised 09.01.2024; Accepted 19.03.2024

Published 29.03.2024; First Online 31.03.2024

https://doi.org/10.34229/2707-451X.24.1.1

Previous  |  FULL TEXT (in Ukrainian)  |  Next

 

MSC 90B85

Packing Soft Polygons in a Minimum Height Rectangular Target Domain

Oksana Melashenko 1 ORCID ID favicon Big,   Tetyana Romanova 2 * ORCID ID favicon Big,   Oleksandr Pankratov 1 ORCID ID favicon Big,   Sergiy Shekhovtsov 3 ORCID ID favicon Big,   Carlos Gustavo Martinez-Gomez 4

1 Anatolii Pidhornyi Institute of Mechanical Engineering Problems of the NAS of Ukraine, Kharkiv

2 University of Leeds, UK

3 Kharkiv National University of Radioelectronics, Ukraine

4 Nuevo Leon State University (UANL), Mexico

* Correspondence: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

The paper studies packing polygons of variable shapes, regarding the stretching coefficient, in a rectangular target domain of minimum height. Packing objects of a variable shape have a wide spectrum of applications, e.g, in biology, materials science, mechanics, land allocation, and logistics. Interest in these problems is also due to the modeling of the structures of porous media under pressure, e.g., for creating test models of artificial digital cores. Elements of porous media can be deformed under the influence of an external force, but the mass of each particle remains unchanged. This corresponds to conservation of area for the two-dimensional case. Polygonal objects must be completely contained within the target domain (containment constraint) and do not overlap (non-overlapping constraint), provided they have free translations, continuous rotations, stretch transformations, and conserve their area. The phi-function technique is used for an analytical description of the placement constraints for variable shape polygons. Quasi-phi-functions for describing non-overlapping constraints and phi-functions for describing containment constraints are defined. The packing problem is presented in the form of a nonlinear programming model. A solution strategy is proposed, which consists of the following stages: generation of feasible starting points; search for local minima of the problem of packing soft polygons for each starting point using the decomposition algorithm; choosing the best local minimum found at the previous stage. To search for smart starting arrangements, an optimization algorithm for packing original polygons using their homothetic transformations is applied. Decomposition of the problem of packing polygons of variable shapes is based on an iterative procedure that allows reducing a large-scale problem to a sequence of smaller nonlinear programming problems (linear to the number of objects). Numerical examples are provided for oriented rectangles and non-oriented regular polygons.

 

Keywords: packing, polygons, stretch transformation, rectangular container, quasi-phi-functions, optimization, decomposition algorithm.

 

Cite as: Melashenko O., Romanova T., Pankratov O., Shekhovtsov S., Martinez-Gomez G. C. Packing Soft Polygons in a Minimum Height Rectangular Target Domain. Cybernetics and Computer Technologies. 2024. 1. P. 5–17. (in Ukrainian) https://doi.org/10.34229/2707-451X.24.1.1

 

References

           1.     Yagiura M., Umetani S., Imahori S., Hu Y. Cutting and Packing Problems. From the Perspective of Combinatorial Optimization. Tokyo: Springer, 2024. ISBN 978-4-431-55290-1

           2.     Fischer A., Scheithauer G. Cutting and packing problems with placement constraints. Optimized Packings with Applications. Springer Optimization and Applications. 2015. 105. P. 119–156. https://doi.org/10.1007/978-3-319-18899-7_6

           3.     Kallrath J. Cutting & Packing beyond and within Mathematical Programming. Business Optimisation Using Mathematical Programming. 2021. P. 495–526. https://doi.org/10.1007/978-3-030-73237-0_15

           4.     Jiang J., Garikipati K., Rudraraju S. A Diffuse Interface Framework for Modeling the Evolution of Multicell Aggregates as a Soft Packing Problem Driven by the Growth and Division of Cells. Bulletin of Mathematical Biology. 2019. 81. P. 3282–3300. https://doi.org/10.1007/s11538-019-00577-1

           5.     Yuan Q., Li Z., Gao Y., Wang Y.H., Li X. Local responses in 2D assemblies of elliptical rods when subjected to biaxial shearing. Acta Geotechnica. 2019. 14. P. 1685–1697. https://doi.org/10.1007/s11440-019-00844-4

           6.     Chen Y., Yuan M., Wang Z., Zhao Y., Li J., Hu B., Xia C. Structural characterization and statistical properties of jammed soft ellipsoid packing. Soft Matter. 2021. 17. P. 2963. https://doi.org/10.1039/D0SM01699C

           7.     Bui, Q.T., Vidal, T. & Hà, M.H. On three soft rectangle packing problems with guillotine constraints. J Glob Optim. 2019. 74. P. 45–62. https://doi.org/10.1007/s10898-019-00741-w

           8.     Zuo Q. The Three-dimensional Bin Packing Problem for Deformable Items. IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). Kuala Lumpur, Malaysia. 2022. P. 0911-0918. https://doi.org/10.1109/IEEM55944.2022.9989600

           9.     Blunt M.J. Multiphase Flow in Permeable Media: A Pore-Scale Perspective. Cambridge: Cambridge University Press. 2017. https://doi.org/10.1017/9781316145098

       10.     Eichheimer P., Thielmann M., Popov A., Golabek G.J., Fujita W., Kottwitz M.O., Kaus B.J.P. (2019). Pore-scale permeability prediction for Newtonian and non-Newtonian fluids. Solid Earth. 2019. 10 (5). 1717–31. https://doi.org/10.5194/se-10-1717-2019

       11.     Dong X., Liu H., Hou J., Zhang Z., Chen Z. Multi-thermal fluid assisted gravity drainage process: a new improved-oil-recovery technique for thick heavy oil reservoir. J. Petrol. Sci. Eng. 2015. 133. P. 1–11. https://doi.org/10.1016/j.petrol.2015.05.001

       12.     Al-Nakhli A., Tariq Z., Mahmoud M., Abdulraheem A., Al Shehri D. A novel thermochemical fracturing approach to reduce fracturing pressure of high strength rocks. Abu Dhabi Int. Petroleum Exhibition & Conf., SPE-197593- MS. 2019. https://doi.org/10.2118/197593-MS

       13.     Romanova T., Stoyan Yu., Pankratov A., Litvinchev I., Kravchenko O., Duryagina Z., Melashenko O., Chugai A. Optimized packing soft ellipses. Chapter in book Human-Assisted Intelligent Computing. 2023. P. 9.1–9.16. https://doi.org/10.1088/978-0-7503-4801-0ch9

       14.     Torres J., Hitschfeld N., Ruiz R.O., Ortiz-Bernardin A. Convex Polygon Packing Based Meshing Algorithm for Modeling of Rock and Porous Media. Lecture Notes in Computer Science. Springer, Cham. 2020. 12141. https://doi.org/10.1007/978-3-030-50426-7_20

       15.     Burke E., Kendall G. A New Approach to Packing Non-Convex Polygons Using the No Fit Polygon and Meta-Heuristic and Evolutionary Algorithms. Adaptive Computing in Design and Manufacture V. Springer, London. 2002. https://doi.org/10.1007/978-0-85729-345-9_17

       16.     Pankratov A., Romanova T., Shekhovtsov S., Grebennik I., Pankratova J. Packing Irregular Polygons using Quasi Phi-functions. 2020 10th International Conference on Advanced Computer Information Technologies (ACIT). Deggendorf, Germany, 2020. P. 1–5. https://doi.org/10.1109/ACIT49673.2020.9208979

       17.     Peralta J., Andretta M., Oliveira J.F. Solving irregular strip packing problems with free rotations using separation lines. 2017. https://doi.org/10.5220/0006602700710077

       18.     Peralta J., Andretta M., Oliveira J. Packing Circles and Irregular Polygons using Separation Lines. In Proceedings of the 7th International Conference on Operations Research and Enterprise Systems (ICORES 2018). 2018. P. 71–77. https://doi.org/10.5220/0006602700710077

       19.     Kallrath J., Romanova T., Pankratov A., Litvinchev I., Infante L. Packing convex polygons into minimum perimeter convex hulls. Journal of Global Optimization. 2023. 85 (1). P. 39–59. https://doi.org/10.1007/s10898-022-01194-4

       20.     Litvinchev I., Infante L., Romanova T., Martinez-Noa A., Gutierrez L. Optimized packing soft convex polygons. Computer Science and Engineering in Health Services. COMPSE 2022. EAI/Springer Innovations in Communication and Computing. Springer, Cham. 2024. https://doi.org/10.1007/978-3-031-34750-4_7

       21.     Stoyan Yu., Pankratov A., Romanova T. Quasi-phi-functions and optimal packing of ellipses. Journal of Global Optimization. 2016. 65 (2). P. 283–307. https://doi.org/10.1007/s10898-015-0331-2

       22.     Romanova T., Stoyan Y., Pankratov A., Litvinchev I. , Marmolejo J.A. Decomposition algorithm for irregular placement problems. In Intelligent Computing and Optimization, AISC. 2019. 1072. P. 214–221. https://doi: doi:10.1007/978-3-030-33585-4_21

       23.     Li J., An X., Wang J., Zhao H., Zou R., Dong K., Gou D. Experimental study on 3D vibrated packing densification of mono-sized dodecahedral particles. Powder Technology. 2020. 367. P. 703–712. https://doi.org/10.1016/j.powtec.2020.04.020

       24.     Romanova T., Bennell J., Stoyan Y., Pankratov A. Packing of concave polyhedra with continuous rotations using nonlinear optimization. European Journal of Operational Research. 2018. 268 (1). P. 37–53. https://doi:10.1016/j.ejor.2018.01.025

       25.     Romanova T., Litvinchev I., Pankratov A. Packing ellipsoids in an optimized cylinder. European Journal of Operational Research. 2020. 285 (2). P. 429–443. https://doi.org/10.1016/j.ejor.2020.01.051

       26.     Leao A.S., Toledo F.M.B., Oliveira J.F., Carravilla M.A., Alvarez-Valdés R. Irregular packing problems: a review of mathematical models. European Journal of Operational Research. 2020. 282. P. 803–822. https://doi.org/10.1016/j.ejor.2019.04.045

 

 

ISSN 2707-451X (Online)

ISSN 2707-4501 (Print)

Previous  |  FULL TEXT (in Ukrainian)  |  Next

 

 

            Archive

 

© Website and Design. 2019-2024,

V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine,

National Academy of Sciences of Ukraine.