2024, issue 3, p. 87-95

Received 06.06.2024; Revised 27.06.2024; Accepted 10.09.2024

Published 24.09.2024; First Online 30.09.2024

https://doi.org/10.34229/2707-451X.24.3.9

Previous  |  FULL TEXT  |  Next

 

UDC 681.7.08:535.3

Fluorometer “FLS 10s”

Oleksandr Voronenko ORCID ID favicon Big

V.M. Glushkov Insitute of Cybernetics of the NAS of Ukraine, Kyiv

Correspondence: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Many biological objects have the ability to fluoresce under the influence of electromagnetic radiation in the optical range. Measuring the fluorescence of a biological object helps obtain information about its internal state. Therefore, the creation of instruments for scientific research in the field of studying biological objects has been a pressing task for many areas of human activity for many years. In particular, these are areas such as agriculture, ecology, food industry and medicine. This article is devoted to a description of the recently developed “FLS 10s” device for studying plant chlorophyll fluorescence, as well as description of software for operating the device and analyzing the information obtained. This device provides data of well known OJIP test.

 

Keywords: fluorescence, fluorometer, fluorescence measurement, Kautsky effect, OJIP test, fluorescence induction, fast chlorophyll α fluorescence induction.

 

Cite as: Voronenko O. Fluorometer “FLS 10s”. Cybernetics and Computer Technologies. 2024. 3. P. 87–95. https://doi.org/10.34229/2707-451X.24.3.9

 

References

           1.     Rodríguez-Vidal F.J., García-Valverde M., Ortega-Azabache B., González-Martínez Á., Bellido-Fernández A., Díez-Blanco V., Ruíz-Pérez M.O. Monitoring the performance of wastewater treatment plants for organic matter removal using excitation-emission matrix fluorescence. Microchemical Journal. 2022. 175. 107177. https://doi.org/10.1016/j.microc.2022.107177

           2.     Sun Q., Lian J., Cheng Z., Luo X., Qiu Y., Li J., Liu G. A novel near-infrared fluorescence probe for selective sensing of cysteine over GSH and bioimaging in cells, zebrafish and plants. Microchemical Journal. 2024. 196. 109678. https://doi.org/10.1016/j.microc.2023.109678

           3.     Saqrane S., El ghazali I., Oudra B., Bouarab L., Dekayir S., Mandi L., Ouazzani N., Vasconcelos V.M. Detection of microcystin contamination by the measurement of the variability of the in vivo chlorophyll fluorescence in aquatic plant Lemna gibba. Toxicon. 2009. 53. P. 9–14. https://doi.org/10.1016/j.toxicon.2008.10.004

           4.     Salvatori E., Fusaro L., Gottardini E., Pollastrini M., Goltsev V., Strasser R.J., Bussotti F. Plant stress analysis: Application of prompt, delayed chlorophyll fluorescence and 820 nm modulated reflectance. Insights from independent experiments. Plant Physiology and Biochemistry. 2014. 85. P. 105113. https://doi.org/10.1016/j.plaphy.2014.11.002

           5.     Akhtar P., Lambrev P.H. On the spectral properties and excitation dynamics of long-wavelength chlorophylls in higher-plant photosystem I. BBA. Bioenergetics. 2020. 1861. 148274. https://doi.org/10.1016/j.bbabio.2020.148274

           6.     Kan X., Ren J., Chen T., Cui M., Li C., Zhou R., Zhang Y., Liu H., Deng D., Yin Z. Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals. Environmental and Experimental Botany. 2017. 140. P. 56–64. https://doi.org/10.1016/j.envexpbot.2017.05.019

           7.     Pšidováa E., Živčákb M., Stojnić S., Orlović S., Gömöry D., Kučerová J., Ditmarová Ľ., Střelcová K., Brestič M., Kalaji H.M. Altitude of origin influences the responses of PSII photochemistry to heat waves in European beech (Fagus sylvatica L.). Environmental and Experimental Botany. 2018. 152. P. 97–106. https://doi.org/10.1016/j.envexpbot.2017.12.001

           8.     Banks J.M. Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes. Environmental and Experimental Botany. 2018. 155. P. 118–127. https://doi.org/10.1016/j.envexpbot.2018.06.022

           9.     Ferroni L., Živčak M., Kovar M., Colpo A., Pancaldi S., Allakhverdiev S.I., Brestič M.. Fast chlorophyll a fluorescence induction (OJIP) phenotyping of chlorophyll-deficient wheat suggests that an enlarged acceptor pool size of Photosystem I helps compensate for a deregulated photosynthetic electron flow. Journal of Photochemistry & Photobiology, B: Biology. 2022. 234. 112549. https://doi.org/10.1016/j.jphotobiol.2022.112549

       10.     Dilnawaz F., Kalaji M.H., Misra A.N. Nanotechnology in improving photosynthesis under adverse climatic conditions: Cell to Canopy action. Plant Nano Biology. 2023. 4. 100035. https://doi.org/10.1016/j.plana.2023.100035

       11.     Nagy Z., Balogh J., Petrás D., Fóti S., MacArthur A., Pintér K. Detecting drought stress occurrence using synergies between Sun induced fluorescence and vegetation surface temperature spatial records. Science of the Total Environment. 2024. 907. 168053. https://doi.org/10.1016/j.scitotenv.2023.168053

       12.     Rajewicz P.A., Zhang C., Atherton J., Wittenberghe S.V., Riikonen A., Magney T., Fernandez-Marin B., Garcia-Plazaola J.I., Porcar-Castell A. The photosynthetic response of spectral chlorophyll fluorescence differs across species and light environments in a boreal forest ecosystem. Agricultural and Forest Meteorology. 2023. 334. 109434. https://doi.org/10.1016/j.agrformet.2023.109434

       13.     Yao T., Liu S., Hu S., Mo X. Response of vegetation ecosystems to flash drought with solar-induced chlorophyll fluorescence over the Hai River Basin, China during 2001–2019. Journal of Environmental Management. 2022. 313. 114947. https://doi.org/10.1016/j.jenvman.2022.114947

       14.     Suchocka M., Heciak J., Błaszczyk M., Adamczyk J., Gaworski M., Gawłowska A., Mojski J., Kalaji H.M., Kais K., Kosno-Jończy J., Wojnowska-Heciak M.. Comparison of Ecosystem Services and Replacement Value calculations performed for urban trees. Ecosystem Services. 2023. 63. 101553. https://doi.org/10.1016/j.ecoser.2023.101553

       15.     Yan P., Wei S., Chen Y., Ning Q., Hu Z., Guo Z., Xie H., Wu H., Zhang J. Fluorescence spectroscopic characterization of dissolved organic matter in the wastewater treatment plant and hybrid constructed wetlands coupling system in winter: A case study in eastern China. Environmental Technology & Innovation. 2023. 32. 103399. https://doi.org/10.1016/j.eti.2023.103399

       16.     Murugesan R.C., Ahmed-Choudhury M.T., Rozhin A. 2D excitation-emission fluorescence mapping analysis of plant food pigments. Food Chemistry. 2023. 418. 135875. https://doi.org/10.1016/j.foodchem.2023.135875

       17.     Dąbrowski P., Kalaji M.H., Baczewska A.H., Pawluśkiewicz B., Mastalerczuk G., Borawska-Jarmułowicz B., Paunov M., Goltsev V. Delayed chlorophyll a fluorescence, MR 820, and gas exchange changes in perennial ryegrass under salt stress. Journal of Luminescence. 2017. 183. P. 322–333. https://doi.org/10.1016/j.jlumin.2016.11.031

       18.     Yang M., Kang X., Qiu X., Ma L., Ren H., Huang C., Zhang Z., Xin L. Method for early diagnosis of verticillium wilt in cotton based on chlorophyll fluorescence and hyperspectral technology. Computers and Electronics in Agriculture. 2024. 216. 108497. https://doi.org/10.1016/j.compag.2023.108497

       19.     Popescu S.A., Peled A. Optimized RED spectral band Fluorescence of edible plants leaves extracts. Applied Surface Science Advances. 2023. 13. 100385. https://doi.org/10.1016/j.apsadv.2023.100385

       20.     Zhang C., Akhlaq M., Yan H., Ni Y., Liang S., Zhou J., Xue R., Li M., Adnan R.M., Li J. Chlorophyll fluorescence parameter as a predictor of tomato growth and yield under CO2 enrichment in protective cultivation. Agricultural Water Management. 2023. 284. 108333. https://doi.org/10.1016/j.agwat.2023.108333

       21.     Recchia I., Sparla F., Pupillo P. Photosynthetic properties of spring geophytes assessed by chlorophyll fluorescence analysis. Plant Physiology and Biochemistry. 2017. 118. P. 510–518. https://doi.org/10.1016/j.plaphy.2017.07.020

       22.     Samborska I.A., Kalaji H.M., Sieczko L., Borucki W., Mazur R., Kouzmanova M., Goltsev V. Can just one-second measurement of chlorophyll a fluorescence be used to predict sulphur deficiency in radish (Raphanus sativus L. sativus) plants? Current Plant Biology. 2019. 19. 100096. https://doi.org/10.1016/j.cpb.2018.12.002

       23.     Guo Y., Lu Y., Goltsev V., Strasser R.J., Kalaji H.M., Wang H., Wang X., Chen S., Qiang S. Comparative effect of tenuazonic acid, diuron, bentazone, dibromothymoquinone and methyl viologen on the kinetics of Chl a fluorescence rise OJIP and the MR820 signal. Plant Physiology and Biochemistry. 2020. 156. P. 39–48. https://doi.org/10.1016/j.plaphy.2020.08.044

       24.     Kryvonos Yu.G., Romanov V.О.,Galelyuka I.B., Wojcik W., Zyska T., Amirgaliev E. Independent devices and wireless sensor networks for agriculture and ecological monitoring. Recent advances in information technology. ISBN: 978-1-351-24317-9 (e-book). P.105–134. https://doi.org/10.1201/9781351243179-5

       25.     Goltsev V.N., Kalaji M.H., Kouzmanova M.A., Allakhverdiev S.I. Variable and Delayed Chlorophyll a Fluorescence – Basics and Application in Plant Sciences. Moscow–Izshevsk: Institute of Computer Sciences. 2014. 220 p. (in Russian)

       26.     Chen S., Zheng Q., Qi Z., Ding J., Song X., Xia X. Stress-induced delay of the I-P rise of the fast chlorophyll a fluorescence transient in tomato. Scientia Horticulturae. 2024. 326. 112741. https://doi.org/10.1016/j.scienta.2023.112741

       27.     Zhou R., Kan X., Chen J., Hua H., Li Y., Ren J., Feng K., Liu H., Deng D., Yin Z. Drought-induced changes in photosynthetic electron transport in maize probed by prompt fluorescence, delayed fluorescence, P700 and cyclic electron flow signals. Environmental and Experimental Botany. 2019. 158. P. 51–62. https://doi.org/10.1016/j.envexpbot.2018.11.005

       28.     Zushi K., Kajiwara S., Matsuzoe N. Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit. Scientia Horticulturae. 2012. 148. P. 39–46. https://doi.org/10.1016/j.scienta.2012.09.022

       29.     Snider J.L., Thangthong N., Pilon C., Virk G., Tishchenko V. OJIP-fluorescence parameters as rapid indicators of cotton (Gossypium hirsutum L.) seedling vigor under contrasting growth temperature regimes. Plant Physiology and Biochemistry. 2018. 132. P. 249–257. https://doi.org/10.1016/j.plaphy.2018.09.015

       30.     Kautsky H., Hirsch A. Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften. 1931. 19 (48). 964. (in German) https://doi.org/10.1007/BF01516164

 

 

ISSN 2707-451X (Online)

ISSN 2707-4501 (Print)

Previous  |  FULL TEXT  |  Next

 

 

            Archive

 

© Website and Design. 2019-2024,

V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine,

National Academy of Sciences of Ukraine.